Как накопить и сохранить энергию из возобновляемых источников. Системы аккумулирования тепловой энергии


Общие сведения. Одной из ключевых проблем нетрадиционной, в первую очередь, солнечной энергетики является проблема теплового аккумулирования. Тепловые аккумуляторы эффективно используются также в комплексе с ветроэлектрическими агрегатами, фотобатареями и в традиционной энергетике для снятия пиковых нагрузок.

Тепловое аккумулирование - это физический или химический процесс, посредством которого происходит накопление тепла в тепловом аккумуляторе энергии.

Тепловыми аккумуляторами (ТА) называют устройства, обеспечивающие протекание обратимых процессов накопления, хранения и отдачи тепловой энергии в соответствии с нуждами потребителя.

Аккумулирование тепла в различных энергосистемах ориентировано в первую очередь на отопление и горячее водоснабжение. Применение аккумуляторов тепла в водонатрева тельной системе позволяет приспосабливать ее к условиям спроса на горячую воду, изменяющегося в течение суток. Применение различных способов накопления тепловой энергии при использовании солнечных энергетических установок позволяет также преодолеть проблему, обусловленную суточной периодичностью и непостоянством поступления солнечной энергии. Даже в условиях безоблачного неба необходимое количество энергии при соответствующей температуре теплоносителя можно получить только на протяжении нескольких часов до и после полудня. Например, солнечные энергетические установки, предназначенные для отопления помещений, поддерживают температуру теплоносителя на уровне 60 °С лишь около трех часов в сутки. Поскольку в подобных системах периоды потребления и получения энергии не совпадают, накапливать ее необходимо в одни периоды суток, а использовать - в другие.

Практическое применение различных типов тепловых аккумуляторов связано в первую очередь с определением их оптимальных рабочих характеристик, с выбором недорогих и эффективных конструкционных материалов и теплоаккумулирующих сред.

Эффективность теплового аккумулятора при прочих равных условиях определяется массой и объемом теплоаккумулирующего материала (ТАМ), необходимого для обеспечения заданных параметров процесса.

Классификация тепловых аккумуляторов проводится в соответствии с несколькими главными признаками:

по природе аккумулирования:

  • теплоемкостные (TEA),
  • аккумуляторы с фазовым переходом (АФТ),
  • термохимические аккумуляторы (ТХА);

по уровню рабочих температур:

  • низкотемпературные (до 100 °С) ТА,
  • среднетемпературные ТА (от 100 до 400 °С),
  • высокотемпературные ТА (свыше 400 °С);

по продолжительности периода заряд-разряд ТА:

  • краткосрочные (до 3-х суток),
  • среднесрочные (до 1 месяца),
  • межсезонные (до полугода).

Выбор и конструирование ТА проводится с учетом параметров энергосистемы и потребителя тепловой энергии. Как правило, в нетрадиционной энергетике используются краткосрочные или среднесрочные низкотемпературные теплоемкостные аккумуляторы и аккумуляторы с фазовым переходом.

При рассмотрении характеристик аккумулирующих и теплообменных сред, применяемых в тепловом аккумуляторе, можно выделить такие основные разновидности теплового аккумулирования:

  • прямое аккумулирование тепловой энергии - аккумулирующим и теплообменным веществом является одна и та же среда; аккумулирующая среда может быть твердой, жидкой, газообразной или двухфазной (жидкость + газ);
  • косвенное аккумулирование - энергия аккумулируется посредством теплообмена (например, теплопроводностью через стенки резервуара) или в результате массообмена специальной теплообменной среды (в жидком, двухфазном или газообразном состоянии). Аккумулирующая среда может быть твердой, жидкой или газообразной, процесс может протекать без фазового перехода или с фазовым переходом (твердое тело- твердое тело, твердое тело-жидкость, жидкость-пар);
  • полупрямое аккумулирование - процесс проходит, как во втором случае, за исключением того, что аккумулирующая емкость теплообменной среды играет наиболее важную роль;
  • сорбционное аккумулирование - в этом случае используется способность некоторых аккумулирующих сред абсорбировать газы с выделением или поглощением тепла при десорбции газа. Передача энергии может происходить непосредственно в форме тепла или с помощью газа.

Технические решения. Широкий спектр проблем при применении аккумуляторов тепла и большое разнообразие методов аккумулирования приводят к различным техническим решениям, причем для каждого конкретного случая внедрения ТА в энергетическую систему на основе нетрадиционных и возобновляемых источников энергии необходимо проведение детальных исследований и расчетов. Аккумулирование тепла за счет теплоемкости наименее эффективно, низкая теплоемкость многих доступных теплоаккумулирующих материалов должна компенсироваться использованием больших объемов ТАМов, разряд аккумуляторов характеризуется переменной температурой. Эти аккумуляторы еще называются теплоемкостными (TEA), так как их работа основана на использовании теплоемкостных характеристик различных твердых и жидких веществ.

Аккумуляторы, использующие тепловые эффекты обратимых фазовых переходов (АФП), характеризуются более высокой плотностью теплового потока при малом объеме ТАМов и практически постоянной температурой разряда. Однако данный метод имеет свои недостатки: во-первых, стоимость ТАМов с фазовым переходом выше стоимости традиционных теплоемкостных материалов (камень, вода, гравий), во-вторых, теплообмен в АФП требует наличия развитой поверхности теплопередачи, что значительно увеличивает их стоимость. Поэтому при разработке ТА должна учитываться не только стоимость ТАМов, но и стоимость устройства АФП с учетом доступности аккумулирующих и конструкционных материалов.

Плотность энергии в аккумуляторах на основе обратимых химических реакций (так называемые термохимические аккумуляторы - ТХА) выше плотности энергии в АФП и значительно выше, чем в TEA. Принцип работы ТХА основан на аккумулировании энергии, которая поглощается и освобождается при разрыве и создании молекулярных связей в полностью обратимых химических реакциях. При создании ТХА существуют значительные затруднения, обусловленные небольшим количеством дешевых химических соединений, пригодных для ТХА, и выделением газов в процессе химических реакций.

Таким образом, на практике широко используют теплоемкостные аккумуляторы и аккумуляторы с фазовым переходом. Они рекомендуются как для промышленности с использованием значительных объемов, так и в индивидуальных хозяйствах и технологических процессах. Аккумуляторы ТХА могут быть рекомендованы лишь в определенных случаях с использованием безопасных технологий. Тепловое аккумулирование. Для создания эффективных тепловых аккумуляторов необходимо решить такие первоочередные задачи:

  • внедрение теплоаккумулирующих материалов с высокими удельными энергетическими характеристиками, большим ресурсом работы и широким диапазоном рабочих температур;
  • выбор конструкционных материалов с высокими теплотехническими и коррозионностойкими характеристиками;
  • создание оптимальных конструкций ТА в зависимости от функционального назначения, источника энергии и нужд потребителей.

При выборе рабочих веществ для тепловых аккумуляторов необходимо учитывать энергетические и эксплуатационные характеристики, как источника энергии, так и самого аккумулятора. Основными рабочими характеристиками ТАМов являются: удельная энергия, рабочий диапазон температур, стабильность и безопасность в работе, низкая коррозионная агрессивность, недефицитность и невысокая стоимость. При использовании в качестве ТАМов гидратов солей обращают внимание на их способность присоединять и терять молекулу воды при нагреве и охлаждении.

В зависимости от ряда факторов тепловой аккумулятор может иметь постоянные или переменные показатели массы, объема и давления. Постоянная масса (dMaK = 0) - как правило, для случая косвенного аккумулирования, однако может быть таковой и при прямом аккумулировании, если перемешиваемая часть массы после охлаждения (разряд ТА) или нагрева (заряд ТА) полностью возвращается в аккумулятор. Переменная масса (dMaK ф 0) - всегда в случае прямого аккумулирования. Постоянный объем (dVaK = 0) - для случая аккумулирования в закрытых резервуарах. Переменный объем (dУлк ф 0) - для случая аккумулирования в условиях атмосферного давления или при помощи специального компрессионного оборудования.

Если у вас в доме имеется котельная установка, работающая на твердом топливе, то вам должно быть известно, что она не способна функционировать долгое время без вмешательства человека. Это обусловлено необходимостью периодически загружать дрова в топку. Если этого вовремя не сделать, то система начнет остывать, а температура в комнатах будет понижаться.

Если отключится электроэнергия при разгоревшейся топке, то возникнет опасность закипания воды в рубашке оборудования, следствием чего станет ее разрушение. Данные проблемы можно решить методом установки теплоаккумулятора. Он выполняет еще и роль защиты установок из чугуна от растрескивания, когда происходит резкий перепад температуры сетевой воды.

Использование теплоаккумулятора в быту

Аккумулятор тепловой стал для многих современных систем отопления незаменимым устройством. С помощью данного дополнения можно обеспечить накапливание избытка энергии, вырабатываемой в котле и обычно расходуемой напрасно. Если рассматривать модели теплоаккумуляторов, то большинство из них имеют вид стального бака, который обладает несколькими верхними и нижними патрубками. К последним подключается источник тепла, тогда как к первым - потребители. Внутри находится жидкость, которую можно использовать для решения разных задач.

Аккумулятор тепловой используется в быту довольно часто. В основе его работы лежит внушительная теплоемкость воды. Функционирование данного прибора можно описать следующим образом. К верхней части бака подключается трубопровод котельного оборудования. В бак поступает горячий теплоноситель, который оказывается нагретым максимально.

Циркулирующий насос находится снизу. Он вбирает холодную воду и запускает по системе отопления, направляя в котел. Остывшая жидкость в течение короткого времени сменяется нагретой. Как только котел перестает работать, теплоноситель начинает остывать в трубах и трубопроводных магистралях. Вода попадает в бак, где начинает вытеснять горячий теплоноситель в трубы. Обогрев помещения будет продолжаться еще в течение некоторого времени по такому принципу.

Роль теплоаккумулятора

Аккумулятор тепловой в быту способен выполнять множество полезных функций, среди них:

  • стабилизация температурного режима в доме;
  • обеспечение помещений горячим водоснабжением;
  • увеличение коэффициента полезного действия системы до максимально возможного;
  • снижение денежных затрат на топливо;
  • накапливание избыточной энергии от котла;
  • объединение нескольких источников тепла в один контур;
  • возможность разъединения источников тепла.

Что еще необходимо знать об особенностях использования в быту

На сегодняшний день известно несколько методик расчета объема резервуара. Как показывает опыт, на каждый киловатт мощности оборудования необходимо 25 л воды. Коэффициент полезного действия котла, который предусматривает необходимость наличия системы отопления с аккумулятором тепла, повышается до 84%. Пик горения нивелируется, за счёт этого энергоресурсы экономятся в объеме до 30%.

Аккумулятор тепловой обеспечивает сохранение температуры благодаря надежной теплоизоляции из вспененного полиуретана. Дополнительно предусмотрена возможность монтажа ТЭНов, которые позволяют при необходимости нагревать воду.

Когда нужен теплоаккумулятор

Аккумулирование тепла необходимо при большой потребности в водоснабжении. Этот случай распространяется на коттеджи, в которых проживает более 5 человек.

Аккумулирование тепла необходимо и в тех домах, где два санузла. Тепловой аккумулятор требуется и при использовании котлов на твердом топливе. Описываемые приборы сглаживают работу оборудования в часы высоких нагрузок, собирая излишки тепла и исключая закипание. С помощью подобного устройства можно увеличить время между закладками топлива.

Другие виды аккумуляторов тепла

Тепловой аккумулятор для автомобиля тоже может быть использован. Он представляет собой термос, который обеспечивает легкий запуск двигателя при низких температурах. Этот прибор накапливает и отдает тепло. Работает он автономно и почти не требует приложения дополнительной энергии. Принцип его работы заключается в том, что антифриз нагревается от работающего двигателя до 90°С, а если его поместить в тепловой аккумулятор, то он будет оставаться горячим ещё в течение двух суток.

Перед тем как запустить холодный двигатель, потребителю нужно будет включить электронасос, который закачает жидкость в двигатель. Уже через несколько минут мотор окажется прогретым, а значит, его можно будет подключить к автомобильной сигнализации.

Тепловой аккумулятор для ракет "Земля-Воздух" тоже был изобретён. Его производство было налажено, что удалось увеличить эффективность ПВО. Сегодня тепловые аккумуляторы, к сожалению, могут использоваться для создания заминированных машин, которые управляются дистанционно.

Изготовление теплоаккумулятора своими руками

Наиболее простую модель аккумулятора можно изготовить самостоятельно, при этом следует руководствоваться принципами работы термоса. За счёт стенок, которые не проводят тепло, жидкость долго будет оставаться горячей. Для работы следует подготовить:

  • скотч;
  • бетонную плиту;
  • теплоизоляционный материал;
  • медные трубки или ТЭНы.

Когда изготавливается при выборе бака необходимо учитывать желаемую емкость, она должна начинаться от 150 л. Можно подобрать любую металлическую бочку. Но если выбрать объём меньше упомянутого, то смысл теряется. Емкость подготавливается, изнутри удаляется пыль и мусор, участки, где начала образовываться коррозия, необходимо обработать соответствующим образом.

Методика проведения работ

На следующем этапе необходимо подготовить утеплитель, его нужно будет обернуть вокруг бочки. Он станет отвечать за сохранение тепла. Для самодельной конструкции отлично подходит минеральная вата. С внешней стороны ею окутывается бак, а после вся конструкция защищается скотчем. Дополнительно поверхность можно накрыть фольгированной пленкой или металлом.

Когда выполняется тепловой аккумулятор для отопления, важно обеспечить подогрев воды внутри, для этого обычно используется один из существующих способов. Это может быть установка электрических ТЭНов или змеевика, по которому будет пускаться вода. Первый вариант нельзя назвать безопасным, кроме того, он достаточно сложный в реализации, поэтому от него лучше отказаться. А вот змеевик вы можете выполнить из медной трубки, диаметр которой варьируется в пределах от 2 до 3 см.

Длина изделия может быть равна пределу от 8 до 15 мм. Из трубки собирается спираль, которую нужно поместить внутрь емкости. В данной модели аккумулятором выступит верхняя часть бочки. Снизу необходимо расположить еще один патрубок, который будет вводным. Через него станет поступать холодная вода. Патрубки следует дополнить кранами.

На этом можно считать, что простое устройство теплоаккумулятора готово к эксплуатации, но для начала необходимо решить вопрос, связанный с пожарной безопасностью. Такая установка должна располагаться на бетонной плите, ее по возможности отгораживают стенками.

Заключение

Тепловой аккумулятор для ракеты - это устройство, которое далеко от понимания обычного потребителя. А вот теплоаккумулятор для системы отопления вы вполне сможете подключить самостоятельно. Для этого транзитом через бак должен будет проходить обратный трубопровод, на концах которого предусмотрены выход и вход.

На первом этапе между собой следует соединить бак и обратку котла. Между ними располагается циркуляционный насос, он будет перегонять теплоноситель из бочки в отсекающий кран, отопительные приборы и расширительный бак. Со второй стороны устанавливается циркуляционный насос и отсекающий кран.

Дмитрий Белкин

Утепление частного дома. Часть 3

Аккумулирование тепла - залог комфорта в жилище

Итак, в прошлой статье мы рассматривали разные строительные материалы, из которых мы могли бы построить наш дом. Однако, вопроса тепла в доме мы коснулись очень и очень поверхностно. Таким образом, теоретическая часть еще не закончена! Она в самом разгаре! В этой статье я постараюсь доступно рассказать о более серьезных вопросах теплоизоляции жилища. Кстати говоря, в процессе изложения я опять слишком вольно обращался с терминами. Давайте договоримся, что утепление - это набор мер по повышению температуры в помещении, то есть, например, устройство отопления, а теплоизоляция - набор мер по снижению теплопередачи строительных конструкций. Таким образом, предметом этой статьи будет именно теплоизоляция. Причем, теплоизоляция нужна только там, где устроено отопление, поскольку затрудняет выход тепла наружу, и совершенно не защищает от холода, как некоторые думают.

При строительстве теплого дома нужно иметь в виду, что отдельно стоящий дом теряет через стены по разным оценкам всего от 30 до 40 процентов тепла. Это значит, что, если дом уже построен и его характеристики по сохранению тепла вас не удовлетворяют, то дополнительная теплоизоляция стен может и не помочь. В первую очередь, теплоизолировать нужно стены, имеющие недостаточно малую теплопередачу, например, построенные из материалов с высокой теплопроводностью (силикатный кирпич, цементные или бетонные блоки), или стены, имеющие недостаточную толщину. Так, если у вас холодный дом, построенный из дерева, то такие стены достаточно просто проконопатить по-аккуратнее, а если вы живете в холодном доме из пенобетонных или керамзитобетонных блоков, то стоит в первую очередь направить средства на теплоизоляцию потолков и окон.

Теперь затронем основной вопрос этой статьи, а именно процесс накопления тепла стенами. Представим себе ситуацию, когда внутри нашего помещения температура плюсовая, а снаружи минусовая. Таким образом можем считать, что наша стена разделяет две среды с разными температурами. При этом, как мы только что договорились, теплый воздух стремится выйти наружу. Здравый смысл говорит нам, что, если одна поверхность стены имеет температуру, например -20, а вторая поверхность, напротив, имеет температуру + 20, то где-то должен быть и ноль. Судя по всему, при наших условиях этот ноль градусов находится внутри стены.

Для простоты, давайте считать, что ровно посередине. В свою очередь, это значит, что половина стены, в наших условиях, имеет температуру выше нуля. Предположим, затем, что наша стена весит тонну. Следовательно, половина стены весит ровно половину тонны. Самое приятное, что между этой теплой половиной стены и воздухом в комнате происходит процесс теплопередачи, и, если мы удалим весь теплый воздух из нашего помещения, откроем форточку, например, то после закрытия форточки более теплая стена будет отдавать воздуху свое накопленное тепло, притом, тепла будет отдано тем больше, чем будет тяжелее стена и, соответственно, больше сохраненная ей энергия.

Я надеюсь, что теперь понятно, что теплоизоляция внешней стороны стены значительно более предпочтительна, чем теплоизоляция внутри помещения. Действительно, внешняя теплоизоляция смещает ноль градусов по направлению к внешнему краю стены, увеличивая массу теплой части стены, в то время как теплоизоляция внутренней части стены напротив, не дает ей нагреваться и аккумулировать тепло. Помещение с внутренней теплоизоляцией характерно тем, что очень быстро нагревается и так же быстро выветривается при открытой форточке. Тепло-то ведь стенами не накоплено!

Конечно, говорить об аккумулировании тепла внешними стенами мы можем с известной долей условности. Дело в том, что физика процесса теплопередачи говорит, что внешняя стена всегда отдает тепло, а это значит, что и тепло она не аккумулирует, поскольку постоянно его тратит. Это как аккумулятор, который мы постоянно заряжаем, и к которому подключена куча лампочек, которые его постоянно разряжают. Понимаете аналогию? При выключении тока заряда лампочки очень быстро разрядят аккумулятор, просто этот процесс будет не мгновенный и все. Чтобы замедлить процесс разрядки надо повысить емкость аккумулятора, а в случае со стеной нужно увеличивать ее толщину.

Действительно аккумулируют тепло только внутренние стены и массивные предметы, находящиеся в помещении.

Резюме

При устройстве теплого дома нужно следить за тем, чтобы в помещении присутствовали достаточно тяжелые объекты, которые накапливали бы тепло. Это может быть стена, причем внутренняя стена накапливает тепло значительно интенсивнее, чем внешняя, ведь внутренняя стена имеет комнатную температуру по всей толщине! Это может быть монолитная колонна, или нечто не менее тяжелое. Напоминаю, что самым крутым аккумулятором тепла у наших предков, да кое-где и у нас служит кирпичная печь. Вспоминаю, как мы с друзьями топили русскую печь на даче, и она все не грелась, и не грелась, не смотря на то, что огонь просто бушевал в ней, и дров мы потратили огромное количество. Мы так и легли спать в холоде. Зато проснулись под утро от жары. Причем печь накопила столько тепла, что в этот уикенд мы ее больше и не топили. Мы уехали по домам, а она все еще была теплая. Так, если у вас в доме внутреннее утепление и легкие стены, например, из гипсокартона, то есть смысл не экономить на перегородках, и сделать их монолитными.

При устройстве внутренней теплоизоляции ни в коем случае нельзя прокладывать трубы отопления и, особенно водопровода между стеной и теплоизоляцией. Если в случае с отоплением вам грозит только увеличение сумм в счетах за горючее, то водопровод может и замерзнуть!

ВНИМАНИЕ!!! Личный опыт!

Один мой знакомый (сосед) купил деревянный дом. Причем в первую же зиму выяснилось, что рабочие сэкономили на пакле. Короче говоря, вообще ее не положили. Дело осложнялось еще тем, что брусья были пригнаны довольно плотно и нормально проконопатить дом не представлялось возможным. Я предложил соседу утеплить дом снаружи минеральной ватой. Так он и сделал. Кроме того, он устроил в своем доме и внутреннюю теплоизоляцию из пенопласта толщиной 3 см. Затем стены с внутренней стороны были покрыты гипсокартоном в один слой. В итоге, как ни странно, даже в самый сильный мороз в доме не закрывается форточка, а батареи отопления никогда не нагреваются выше 60 градусов. Справедливости ради хочу отметить, что окна использованы с двухкамерными стеклопакетами, а под форточкой имеется в виду маленькая щелка в откидной части окна. Отопление сделано с использованием циркуляционного насоса, что не мало важно!

Вот, пожалуйста! Перед вами случай, когда теория расходится с практикой. Получается, что один жалкий слой гипсокартона делает жилище очень даже комфортным. Я неоднократно предлагал соседу просверлить дырку в его гипсокартоне и сунуть в эту дырку градусник, чтобы проверить вышеизложенную теорию, но он, почему-то, отказывается.

Ну, конечно, теория с практикой расходиться не может. Если говорить серьезно, то можно придумать причины, почему в доме сухо и комфортно. Например, можно предположить, что в этом доме батареи отопления мощнее, чем надо. Может быть комнаты не слишком велики по объему воздуха, может быть хватает акумулированного тепла в потолке или внутренних стенах? В конце концов окна и форточки в мороз никто настеж не распахивал, и, самое интересное, что никто это делать и не собирается! Короче говоря, вот вам факты, а они, как известно - упрямые вещи!

В следующей статье я рассмотрю вопросы влажности воздуха в помещении.

Источник фото - сайт http://www.devi-ekb.ru

Используя накопители тепловой энергии можно экономически эффективно сместить потребление гигаватт энергии. Но на сегодняшний день рынок таких накопителей катастрофически мал, по сравнению с потенциальными возможностями. Основная причина кроется в том, что на начальном этапе зарождения систем аккумуляции тепла, производителями уделялась мало значения исследованиям в этой области. Впоследствии производители в погони за новыми стимулами привели к тому, что технология испортилась, а люди стали неверно понимать ее цели и методы.

Наиболее очевидной и объективной причиной использования системы аккумуляции тепла, является эффективное сокращение количества затрачиваемых средств на потребляемую энергию, к тому же стоимость энергии в пиковые часы, значительно выше, чем в другое время.

Мифы о системах накопления энергии

Миф 1. Нечастое применение таких систем

В настоящее время на рынке широко представлены системы накопления (аккумуляции) тепловой энергии, и многие активно их используют. Отличным примерами, которые демонстрируют значение накопленной энергии, являются бытовые водонагреватели, в которых такую систему называют «системой внепикового охлаждения». Для того, чтобы мгновенно нагреть воду требуется около 18 кВт, но самые мощные нагреватели имеют нагревательные элементы мощностью 4,5 кВт. Поэтому требуется в 4 раза меньше инфраструктур, необходимых про проведения проводки кабеля и соответственно, уменьшенное потребление энергии.

Никем не устанавливаются нагреватели, рассчитанные на потребление мгновенно максимально рассчитанную нагрузку, такая же практика существует и для системы климатизации. Причем установка системы с чиллером обычно уменьшается на 40—50 % (уменьшение инфраструктуры).

Миф 2. Системы аккумуляции тепла занимают очень много места

Возвращаясь к обычному водонагревателю? Много ли он занимает места в Вашем доме?

К тому же, как правило, используется система с частичным накоплением тепла, которая обеспечивает около трети необходимой мощности, потому и места такая установка занимает мало.

Миф 3. Такие системы слишком сложны

Обычный водонагреватель имеет простую конструкцию. Он содержит нагреватель, мощность которого ниже мощности, которая обеспечивает максимальные нагрузки, а его включение происходит в момент, когда температура вводы опускается ниже 95 % от заданной.

Емкость данной системы является простым примером накопителем тепла, который не имеет никаких движущих частей. В системе с частичным обеспечением нагрузки не может произойти отказа, так как в них отсутствует способность случайного задания большого потребления электроэнергии. Большие системы внепикового охлаждения имеют более сложные структуры управления, поэтому с ними может возникать множество проблем, а проектировщику придется потрудиться, чтобы спроектировать эффективную систему со значительной экономией ресурсов.

Миф 4. Отсутствие резервирования (запаса) при частичном накоплении энергии

Практически любая система внепикового охлаждения способна удовлетворять такому же резервирования, как и обычная система такой же стоимости.

Миф 5. Большие капитальные затраты

Получить действующие цены на оборудование проблематично, так как производители их опубликовывают неохотно. Хотя во многих исследованиях указываются низкие цены себестоимости систем. Рассчитаем примерную стоимость системы, используя в качестве удельной стоимости примерную величину в 256 $ на киловатт охлаждения, при этом получим приблизительную стоимость на установку всей системы:

Система, не использующая накопление энергии:

3 чиллера с мощностью 1400 кВт x 256 $/кВт ≈ 1 080 000 долларов.

Система, использующая частичное накопление тепла:

2 чиллера мощностью 1400 кВт x 256 $/кВт ≈ 720 000 долларов.

Система аккумуляции льда на 12300 кВтч x 28 $/кВт.ч ≈ 350 000 долларов.

Общая стоимость системы: ≈ 1 070 000 долларов.

Некоторые особенности оборудования и его расположение в системе могут привести к дополнительным капитальным затратам, однако, конкурировать по стоимости такие системы могут запросто.

Миф 6. Нет обеспечения экономии энергии

Анализируя экономию, необходимо рассмотреть как энергию, которая потребляется в здании, так и энергию, которая используется в источнике ее производства на электростанции. Энергоэффективное оборудование в большинстве своем призвано снижать потребление энергии, при этом, не снижая времени ее использования. Системы внепикового охлаждения экономят энергию за счет переноса ее "за счетчик". Вероятность экономии - 50/50.

Миф 7. Тарифы на электроэнергию могут изменяться, что может привести не только к отсутствию экономии, но и к увеличению затрат

Конечно, изменение тарифов неизбежно, но условия и потребление энергии остаются неизменными.

Можно надеяться, что когда-нибудь нагрузки в дневные и ночные часы сравняются, но такое произойдет, вряд ли, поэтому существенная разница в тарифах будет существовать еще долгие годы.

Достаточно известной на сегодняшний день системой аккумуляции тепла является система «теплый пол», в которой кабель заливается стяжкой 5 см. Но немногие знают, что увеличение стяжки до 10-15 см поможет не только снизить расходы, но и начать процесс накапливания тепла.

Раньше для накопления тепла использовали «тепловые пушки», которые не грели пространство около непосредственного нахождения людей, и к тому же сжигали кислород. Кабельные же системы обогрева не только позволяют эффективно аккумулировать тепло, но еще и создают комфортный микроклимат в помещении.

Одной из причин, позволяющих экономию сделать значительной, стало введение новых трехтарифных счетчиков электроэнергии, но не у многих есть возможность использовать систему обогрева в ночные часы. Использование кабельной системы вкупе со стяжкой 5 см позволяет нагревать быстро кабель, но в тоже время происходит и быстрое его остывание. То есть процесс имеет циклический характер. Увеличение стяжки до 10-15 см позволяет дольше сохранять тепло, а значит и длительность цикла увеличивается до нескольких часов.

Неравномерное потребление горячей воды требует синхронного изменения отпуска теплоты со станции или соответствующего приготовления ее на месте потребления. Ввиду неосуществимости полного соответствия выработки теплоты на горячее водоснабжение и его потребления наблюдается постоянное нарушение отопительно-вентиляционных режимов, требующих создания на станции излишних резервов теплоприготовительного оборудования.

Рис. 3.10. Графики расхода теплоты на горячее водоснабжение:
а – суточный; б – интегральный; 1 – изменение расхода теплоты по часам суток; 2 – среднечасовой расход теплоты за сутки; 3 – фактическое потребление теплоты; 4 – отпускаемая теплота

Установка аккумуляторов горячей воды дает возможность выровнять нагрузку станционных водонагревателей и тем самым уменьшить запас пиковой мощности на тепловой станции, вследствие чего обеспечивается меньшая разрегулировка расходов теплоты на отопление и вентиляцию. Аккумуляторы на абонентских вводах позволяют устранить колебания температуры горячей воды при минимальных и максимальных водоразборах и уменьшить расчетную теплопроизводительность местных подогревателей.

Емкость аккумулятора определяется с помощью интегрального графика, который строится на основе заданного суточного расхода теплоты (рис. 3.10). Для построения интегрального графика необходимо определить по суточному графику произведение часового расхода теплоты Q i по соответствующей продолжительности n i использования теплоты. Полученное произведение, представляющее расход теплоты за время n i , на интегральном графике откладывается на ординате в конце того же отрезка времени. Последующие значения расходов теплоты Q i n i за последующие промежутки времени n i на интегральном графике суммируются с предыдущими. В итоге получается ломаная линия 3 фактического потребления теплоты, каждая ордината этого графика выражает общий расход теплоты от начала потребления до рассматриваемого момента. Ордината графика фактического потребления теплоты в конце суток показывает расход теплоты за сутки.



Так как теплота из тепловых сетей поступает равномерно и непрерывно, тo график сообщенной потребителю теплоты выражается прямой линией 4. Тангенс угла наклона графика сообщенной теплоты численно равен среднечасовому расходу теплоты за сутки

. (3.1)

Меньший наклон участков линии 3 по сравнению с линией 4 означает, что поступление теплоты из сетей превосходит фактическое потребление и, наоборот, при большем наклоне участков линии 3 фактическое потребление теплоты превосходит его поступление из тепловых сетей, что при отсутствии аккумуляторов недопустимо. Разность ординат линий 3 и 4 показывает количество неспользованной теплоты из тепловых сетей, которое могло быть накоплено в аккумуляторе. Если неиспользуемая теплота аккумулируется, то разность ординат графиков поступления и потребления теплоты в каждый момент времени указывает на наличие запаса теплоты в аккумуляторе. Ордината Q макс количественно выражает наибольший запас теплоты.

При определении необходимого запаса теплоты в аккумуляторе среднечасовой расход теплоты, кВт, найденный по формуле (3.1), должен быть не менее значения

, (3.2)

где G и – расход горячей воды за сутки наибольшего водопотребения, м 3 /сут; r – плотность воды, кг/м 3 ; с – теплоемкость воды, кДж/(кг×°С); t г средняя температура горячей воды в трубопроводах горячего водоснабжения; Т – время потребления горячей воды в сутки, ч; Q т.п – потери теплоты в подающих и циркуляционных трубопроводах, кВт.

Расход горячей воды за сутки наибольшего водопотребления находится по формуле

, (3.3)

где g и – норма расхода горячей воды за сутки наибольшего водопотребления, л/сут; m – количество потребителей (жителей) в здании или группе зданий.

Для жилых домов, общежитий, гостиниц, санаториев, больниц, школ и детских учреждений время потребления горячей воды в сутки принимают 24 ч. Для остальных общественных зданий это время принимают равным числу часов работы их в сутки, но не менее 10 ч, а при наличии аккумуляторов – по числу часов зарядки аккумуляторов. Для вспомогательных зданий промышленных предприятий время потребления горячей воды должно быть равно продолжительности зарядки аккумуляторов в смену.

При отсутствии суточных графиков расхода теплоты на горячее водоснабжение интегральный график может быть построен по безразмерным суточным графикам, приведенным для различных категорий потребителей в справочной литературе. В безразмерных графиках ордината 100% расхода теплоты соответствует среднечасовому расходу теплоты, определенному по формуле (3.2).

Применение аккумуляторов может сократить время потребления теплоты из тепловых сетей. Момент времени и продолжительность отключения тепловых сетей выбирается в зависимости от характера изломов линий интегрального графика. Например, для интегральных графиков на рис. 3.11 целесообразно выбрать продолжительность отключения сетей на время n 1 и n 2 . В период прекращения поступления теплоты из тепловых сетей горячее водоснабжение производится только из аккумулятора. Продолжительность отключения сетей подбирается так, чтобы запас теплоты в начале и в конце суток был одинаковым.

Рис. 3.11. Варианты аккумулирования теплоты:
1 – фактическое потребление теплоты; 2 – поступление теплоты из тепловых сетей;
n 1 и n 2 – продолжительность отключения тепловых сетей; n – продолжительность зарядки аккумулятора

В период пользования горячей водой запас теплоты в аккумуляторе изменяется от максимального Q м aкс до минимального Q мин значений. Если теплота аккумулируется при переменном объеме воды с постоянной ее температурой, то необходимая емкость акмулятора, м 3 , находится из выражения

, (3.4)

где Q м aкс – запас теплоты, кВт×ч.

Если теплота аккумулируется при постоянном объеме воды за счет изменения ее температуры, то емкость аккумулятора определяется по формуле

, (3.5)

где t макс и t мин – максимальная и минимальная температуры горячей воды, °С.

В аккумуляторе постоянного объема накопление теплоты осуществляется за счет увеличения нагрева воды. Следовательно, большему и меньшему запасу теплоты в аккумуляторе на интегральном графике (рис. 3.11) соответствуют максимальная и минимальная температуры воды. Наибольшая температура воды в аккумуляторе не должна превышать 75 °С, а наименьшая – быть не ниже 40 °С.

При наличии в жилых и общественных зданиях автоматизированных систем горячего водоснабжения, а в производственных зданиях душевых сеток (не более десяти) применение аккумуляторов не обязательно.









2024 © rukaraoke.ru.