Как работать с памятью. Чтобы помнили: как работает наша память и что изменит её в будущем. От чего зависит качество памяти


Человеческая память - это одна из самых интереснейших загадок. Почему с годами она слабеет, и как сохранить в старости свой разум. Как работает память человека? Этот вопрос интересует, наверное, многих людей. Первые воспоминания человека начинаются примерно с трехлетнего возраста. Так многие не запоминают того, что происходило с ними до трех лет. Некоторые не помнят, что было в их раннем детстве и до четырех лет.

В 10-12 месяцев ребенок уже что-то запоминает. В два года он уже может удерживать целые эпизоды в памяти. Ребенок не сможет ничего запомнить, пока не научится рассказывать о своих впечатлениях.

Мимолетное впечатление во время сна становится воспоминанием.

Проведенные исследования показали, что для того чтобы у человека сформировались воспоминания, ему необходим полный цикл сна. Поэтому, если на вас в течение дня что-то произвело сильное впечатление, то во время отдыха, ночью вы все равно будете продолжать думать об этом впечатлении. За ночь восприятие только усилиться. Долговременная память угасает потому, что мы просто иногда не можем вспомнить деталь, которая бы воскресила наше воспоминание. Многие исследователи считают, что информация, которая отложена в долговременной памяти, там остается навсегда. Однако мы не можем вспомнить какие-то события просто потому, что потеряли одно из звеньев ассоциативного ряда.

Что делать, чтобы вспомнить, что нужно сделать на следующий день. Например, завтра вам нужно зайти на почту за письмом, а вы, то забудете, то вам некогда. Как же сделать, чтобы не забыть этого? Оказывается лучше всего будущая память работает на предметных связях. Поэтому дорога мимо почты и извещение на столе будут намного эффективнее, чем планы, выстроенные в голове.

Почему слабеет память? Причиной этому может быть не только возраст. Стресс, обезвоживание, инфекционные заболевания - это всего несколько причин, кроме этого испортить память могут и алкоголь, определенные лекарства, депрессия, питание, волнение, проблемы с щитовидной железой.

Потеря памяти - это естественный и неизбежный процесс?

Нет, с возрастом не все люди теряют память. Память работает лучше у тех, кто ведет наиболее активный интеллектуальный и физический образ жизни, чем у тех, кто не занимается умственной деятельностью и ведет сидячий образ жизни. Если вы не будете вести замкнутый образ жизни, то у вас больше шансов в старости сохранить интеллектуальное здоровье.

Кроме всего повышенное давление может стать причиной потери памяти. Так повышенное давление влияет на сосуды, питающие мозг кровью. По этой причине вы можете потерять память. Но исследования показывают, что память можно исправить с помощью аэробных нагрузок.

Былую скорость памяти может вернуть и пожилой человек. Для этого нужно как можно чаще заставлять себя думать, например, играть в настольные игры, решать кроссворды. Кроме того, очень хорошо помогает быстрая ходьба (спорт).

Человеку с годами бывает трудно удержать в памяти сразу несколько событий. Например, вечером вы припарковали машину, а на утро не можете вспомнить в каком месте. Но это еще не означат, что у вас имеются проблемы с памятью. Просто когда вы парковали машину, вас могли просто отвлечь звонком или разговором. Для того чтобы справиться с сложностями такого рода, вам нужно получше сконцентрироваться, когда вы паркуете машину или когда кладете ключи, на несколько секунд дольше посмотрите на место куда вы их кладете. Проблемы с памятью, конечно, являются первым признаком будущей болезни Альцгеймера. Но не у всех людей, которые страдают подобным расстройством, в итоге развивается болезнь Альцгеймера. Если вы не сможете вдруг сориентироваться в знакомом месте, это будет серьезным признаком данной болезни. А также серьезный повод обратиться за помощью к врачу.

Заразно ли слабоумие?

Если один супруг страдает слабоумием, то и у другого супруга слабоумие тоже возможно. Недавно провели исследование, которое подтвердило, что супруга страдает расстройством памяти, то риск ее мужа возрастает в 12 раз. Женщины оказались крепче: если у супруга плохо с памятью, риски жены вырастают в 4 раза. Однако разум многих участников исследования остался незамутненным, несмотря на то, что рядом слабоумный супруг или супруга. Но напряжение, которое связанно с депрессией, тяжелым уходом, а также общее слабое здоровье могут принести свои плоды.

- Каждый раз, когда не сможете вспомнить имя или название места, отмечайте в дневнике.
- А если я не смогу вспомнить о дневнике?..

В этой статье мы познакомим вас с принципами работы памяти, расскажем о приемах запоминания и извлечения воспоминаний, поделимся упражнениями, рекомендациями ученых и неожиданными фактами о памяти. Вы это точно запомните 🙂

Как устроена память

Знаете ли вы, что само слово «память» вводит нас в заблуждение. Оно создает впечатление, будто мы говорим о чем-то едином, об одном ментальном навыке. Но за последние пятьдесят лет ученые выяснили, что существует несколько разных процессов запоминания. К примеру, у нас есть краткосрочная и долговременная память.

Все знают, что краткосрочная память используется тогда, когда вам нужно удержать в сознании какую-то мысль в течение примерно минуты (например, телефонный номер, по которому вы собираетесь позвонить). При этом очень важно не думать о чем-то еще - иначе вы сразу забудете номер. Это утверждение справедливо как для молодых, так и для пожилых людей, но для последних его актуальность все же немного выше. Краткосрочная память участвует в различных процессах, например, служит для отслеживания изменений в числе при сложении или вычитании.

Долгосрочная памят ь отвечает за все, что понадобится нам более чем через минуту, даже если в этом промежутке вы отвлекались на что-то другое. Долгосрочная память делится на процедурную и декларативную.

  1. Процедурная память касается действий, к примеру, езды на велосипеде или игры на фортепиано. Если однажды вы научились это делать, впоследствии ваше тело будет просто повторять нужные движения - и управляется это процедурной памятью.
  2. Декларативная память , в свою очередь, участвует в осознанном вызове информации, к примеру, когда вам нужно восстановить список покупок. Этот вид памяти может быть либо вербальным (словесным), либо визуальным (зрительным) и подразделяется на семантическую и эпизодическую память.
  • Семантическая память относится к значению концептов (в частности, к именам людей). Допусти, знание о том, что же такое велосипед, относится этому виду памяти.
  • Эпизодическая память - к событиям. Например, знание о том, когда вы в последний раз отправились на велосипедную прогулку, взывает к вашей эпизодической памяти. Частью эпизодической памяти является автобиографическая - она касается различных событий и жизненных переживаний.

Наконец, мы добрались до проспективной памяти - она относится к вещам, которые вы собираетесь сделать: позвонить в автосервис, или купить букет цветов и навестить свою тетушку, или почистить лоток кота.

Как формируются и возвращаются воспоминания

Воспоминание - это механизм, заставляющий впечатления, полученные в настоящем, влиять на нас в будущем. Для мозга новый опыт означает спонтанную активность нейронов. Когда с нами что-то происходит, кластеры нейронов включаются в действие, передавая дальше электрические импульсы. Работа гена и выработка протеина создают новые синапсы, стимулируют рост новых нейронов.

А вот процесс забывания похож на то, как снег ложится на предметы, укрывая их собой, от чего они становятся белыми-белыми - да такими, что уже не различишь, где что было.

Импульс, провоцирующий извлечение воспоминания - внутреннего (мысли или чувства) или внешнего события, вызывает у мозга ассоциацию со случаем из прошлого. работает как своего рода прогнозирующее устройство: он постоянно готовится к будущему на основании прошлого. Воспоминания обусловливают наше восприятие настоящего за счет «фильтра», через который мы смотрим и автоматически предполагаем, что произойдет дальше.

У механизма извлечения воспоминаний имеется важное свойство. Его удалось тщательно изучить только в последние двадцать пять лет: когда мы достаем из внутреннего хранилища закодированное воспоминание, оно не обязательно распознается как нечто из прошлого.

Возьмем, к примеру, катание на велосипеде. Вы садитесь на велосипед и просто едете, а в мозге срабатывают кластеры нейронов, позволяющие крутить педали, держать равновесие и тормозить. Это один тип воспоминания: событие в прошлом (попытки научиться кататься на велосипеде) повлияли на ваше поведение в настоящем (вы на нем катаетесь), но вы не ощущаете сегодняшнюю велопрогулку как воспоминание о том дне, когда у вас впервые получилось это сделать.

Если же попросить вас припомнить самое первое катание на велосипеде, вы задумаетесь, просканируете хранилище памяти, и, допустим, у вас возникнет образ папы или старшей сестры, которые бежали за вами, вы вспомните страх и боль от первого падения или восторг от того, что вам удалось-таки добраться до ближайшего поворота. И вы будете точно знать, что вспоминаете что-то из прошлого.

Два типа обработки воспоминаний тесно связаны в нашей повседневной жизни. Те, что помогают нам крутить педали, называются имплицитными воспоминаниями, а способность вспомнить день, когда мы научились кататься, - эксплицитными воспоминаниями.

Мастер собирать мозаики

У нас есть кратковременная рабочая память, грифельная доска сознания, на которой мы можем в каждый данный момент поместить какую-либо картину. И, кстати, она имеет ограниченную емкость, где хранятся присутствующие на переднем плане сознания образы. Но есть и другие виды памяти.

В левом полушарии гиппокамп формирует фактические и лингвистические знания; в правом - упорядочивает «кирпичики» жизненной истории по времени и темам. Вся эта работа делает эффективнее «поисковую систему» памяти. Гиппокамп можно сравнить с тем, кто собирает мозаики: он соединяет отдельные фрагменты образов и ощущений имплицитных воспоминаний в полноценные «картинки» фактической и автобиографической памяти.

Если вдруг гиппокамп повредится, например при инсульте, нарушится и память. Дэниел Сигел в своей книге рассказал такую историю: «Однажды на ужине у друзей я встретил человека с такой проблемой. Он вежливо сообщил мне, что у него было несколько двусторонних гиппокамповых инсультов, и просил не обижаться, если я на секунду отойду налить себе воды, а он потом меня не вспомнит. И действительно, я вернулся со стаканом в руках, и мы снова представились друг другу».

Как и некоторые виды снотворного, алкоголь печально известен тем, что временно отключает наш гиппокамп. Однако состояние отключки, вызванное алкоголем, не то же самое, что временная потеря сознания: человек находится в сознании (хотя и недееспособен), но не кодирует происходящее в эксплицитной форме. Люди, испытывающие такие провалы в памяти, могут не помнить, как они попали домой или как встретили чело- века, с которым по утру проснулись в одной постели.

Гиппокамп также отключается в состоянии гнева, и люди, страдающие приступами неконтролируемой ярости, не обязательно лгут, когда утверждают, что не помнят сказанного или сделанного ими в этом измененном состоянии сознания.

Как проверить свою память

Психологи используют разные техники для проверки памяти. Некоторые из них можно провести самостоятельно дома.

  1. Тест на словесную память. Попросите кого-нибудь зачитать вам 15 слов (только не связанных друг с другом слов: «куст, птица, шляпа» и так далее). Повторите их: люди до 45 лет запоминают обычно около 7-9 слов. Затем прослушайте этот список еще четыре раза. Норма: воспроизвести 12–15 слов. Займитесь своими делами и через 15 минут повторите слова (но уже только по памяти). Большинство людей среднего возраста не могут воспроизвести более 10 слов.
  2. Тест на зрительную память. Срисуйте эту сложную диаграмму, а через 20 попробуйте нарисовать ее по памяти. Чем больше деталей вы вспомните, тем лучше у вас развита память.

Как память связана с органами чувств

По словам ученого Майкла Мерцениха, «один из наиболее важных выводов, сделанный на основе результатов недавно проведенного исследования, - то, что органы чувств (слух, зрение и другие) тесно связаны с памятью и когнитивными способностями. Из-за этой взаимозависимости слабость одного часто означает, или даже становится причиной, слабости другого.

Например, известно, что пациенты, страдающие болезнью Альцгеймера, постепенно теряют память. А одним из проявлений этой болезни бывает то, что они начинают меньше есть. Оказалось, что, поскольку среди симптомов этого заболевания есть и расстройство зрения, больные (помимо прочих причин) просто не видят еду…

Другой пример касается нормальных возрастных изменений познавательной деятельности. Старея, человек становится все более забывчивым и рассеянным. Объясняется это во многом тем, что мозг уже не так хорошо, как прежде, обрабатывает сенсорные сигналы. В результате мы утрачиваем способность сохранять новые зрительные образы своего опыта в таком же четком виде, как раньше, и впоследствии у нас возникают проблемы с их использованием и восстановлением».

Кстати, любопытно, что воздействие синего света усиливает реакцию на эмоциональные раздражители гипоталамуса и миндалины, то есть участков мозга, ответственных за организацию внимания и памяти. Так что смотреть на все оттенки синего полезно.

Приемы и упражнения для тренировки памяти

Первое и самое главное, что нужно знать, чтобы память была хорошей - . Исследования продемонстрировали, что гиппокамп, ответственный за пространственную память, увеличен у водителей такси. Это значит, что чем чаще вы занимаетесь деятельностью, которая задействует память, тем лучше вы ее прокачиваете.

А также вот еще несколько приемов, которые помогут вам развивать память, улучшать способность вспоминать и запоминать все, что нужно.


1. Безумствуйте!

Память человека чрезвычайно экономична. Если бы она сохраняла все раздражающие факторы и всю информацию, все повседневные мелочи, то вероятнее всего мозг взорвался бы или же из-за избыточного воздействия раздражителей мы стали бы недееспособными.

Головной мозг дифференцирует и отбирает новую информацию, чтобы иметь возможность работать эффективнее. И этот выбор головной мозг каждого человека делает индивидуально. Память сохраняет только те вещи, которым мы придаем особое значение и которые мы осознанно и эмоционально перерабатываем. Таким образом, чувства играют значительную роль в процессе сохранения информации в памяти . Отвечает за это так называемая лимбическая система, которая, согласно строению головного мозга, располагается непосредственно под корой больших полушарий головного мозга. К лимбической системе, центру чувств и головного мозга, также относится «детектор нового» гиппокамп, с эмоциональной точки зрения оценивающий поступающую информацию. Никакая новая информация, касающаяся каких-либо фактов или биографических воспоминаний, не попадает в долговременную память, не пройдя через лимбическую систему, которая служит фильтром, ищет только нужную информацию, связывает ее с чувствами и затем распределяет ее по коре головного мозга. Чем чаще происходит этот процесс, чем сильнее он эмоционально окрашен, тем быстрее будет выучена эта информация и тем дольше она будет храниться в памяти.

Новизна, значение и интенсивность эмоциональной окраски являются решающими факторами в том, что мы сохраняем в своей памяти. Сильные эмоциональные события обрабатываются иначе, нежели незначительные, посторонние факты воспринимаются хуже, чем личный опыт. Нейтральная информация, такая как обычный школьный материал, должна обрабатываться осознанно, повторяться, преобразовываться, дополняться и просто заучиваться. Действует принцип «First in last out «, означающий: то, что человек выучил в первую очередь, запоминается лучше всего. Свежая информация только после осознанного разъяснения может отложиться на долгое время в память .

Таким образом, выражение «передавать знания» ошибочно. Знания не могут быть в полной мере переданы, а должны быть встроены в память каждого человека посредством его собственной системы нервных соединений. Гёте сказал замечательную фразу: «Необходимо добыть свои знания, чтобы обладать ими!».

То, что наш головной мозг очень экономичен и обладает множеством фильтров, однако, не означает, что наше большое хранилище, наша долговременная память, когда-то может быть переполнена. Кора больших полушарий головного мозга обладает непостижимо большим объемом памяти. И чем больше мы ее насыщаем, тем быстрее и лучше наш мозг может мыслить и запоминать новую информацию.

Нейробиологи из Канады и США обнаружили, что в запоминании простых навыков участвуют не все нервные клетки, получающие необходимую для этого информацию, а лишь около четверти из них. То, какие именно нейроны примут участие в формировании долговременной памяти, зависит от концентрации регуляторного белка CREB в клеточном ядре. Если искусственно повысить концентрацию CREB в некоторых нейронах, запоминать будут именно они. Если заблокировать CREB в части нейронов, роль запоминающих возьмут на себя другие нервные клетки.

Одним из самых блестящих достижений нейробиологии XX века стала расшифровка молекулярных механизмов памяти. Нобелевский лауреат Эрик Кандел и его коллеги сумели показать, что для формирования самой настоящей памяти - как кратковременной, так и долговременной - достаточно всего трех нейронов, определенным образом соединенных между собой.

Память изучалась на примере формирования условного рефлекса у гигантского моллюска - морского зайца Aplysia. Моллюску осторожно трогали сифон, и тотчас вслед за этим сильно били по хвосту. После такой процедуры моллюск некоторое время реагирует на легкое прикосновение к сифону бурной защитной реакцией, но вскоре всё забывает (кратковременная память). Если «обучение» повторить несколько раз, формируется стойкий условный рефлекс (долговременная память).

Оказалось, что процесс обучения и запоминания не имеет ничего общего с какими-то высшими, идеальными или духовными материями, а полностью объясняется довольно простыми и совершенно автоматическими событиями на уровне отдельных нейронов. Весь процесс можно полностью воспроизвести на простейшей системе из трех изолированных нервных клеток. Один нейрон (сенсорный) получает сигнал от сифона (в данном случае - чувствует легкое прикосновение). Сенсорный нейрон передает импульс моторному нейрону, который, в свою очередь, заставляет сокращаться мышцы, участвующие в защитной реакции (Aplysia втягивает жабру и выбрасывает в воду порцию красных чернил). Информация об ударе по хвосту поступает от третьего нейрона, который в данном случае играет роль модулирующего. Нервный импульс от одного нейрона к другому передается посредством выброса сигнальных веществ (нейромедиаторов). Точки межнейронных контактов, в которых происходит выброс нейромидиатора, называются синапсами.

За эту картинку Эрику Канделу дали Нобелевскую премию. Здесь показано, как в простейшей системе из трех нейронов формируется кратковременная и долговременная память

На рисунке показаны два синапса. Первый служит для передачи импульса от сенсорного нейрона к моторному. Второй синапс передает импульс от модулирующего нейрона к окончанию сенсорного. Если в момент прикосновения к сифону модулирующий нейрон «молчит» (по хвосту не бьют), в синапсе 1 выбрасывается мало нейромедиатора, и моторный нейрон не возбуждается.

Однако удар по хвосту приводит к выбросу нейромедиатора в синапсе 2, что вызывает важные изменения в поведении синапса 1. В окончании сенсорного нейрона вырабатывается сигнальное вещество cAMP (циклический аденозинмонофосфат). Это вещество активизирует регуляторный белок - протеинкиназу А. Протеинкиназа А, в свою очередь, активизирует другие белки, что в конечном счете приводит к тому, что синапс 1 при возбуждении сенсорного нейрона (то есть в ответ на прикосновение к сифону) начинает выбрасывать больше нейромедиатора, и моторный нейрон возбуждается. Это и есть кратковременная память : пока в окончании сенсорного нейрона много активной протеинкиназы А, передача сигнала от сифона к мышцам жабры и чернильного мешка осуществляется более эффективно.

Если прикосновение к сифону сопровождалось ударом по хвосту много раз подряд, протеинкиназы А становится так много, что она проникает в ядро сенсорного нейрона. Это приводит к активизации другого регуляторного белка - транскрипционного фактора CREB. Белок CREB «включает» целый ряд генов, работа которых в конечном счете приводит к разрастанию синапса 1 (как показано на рисунке) или к тому, что у окончания сенсорного нейрона вырастают дополнительные отростки, которые образуют новые синаптические контакты с моторным нейроном. В обоих случаях эффект один: теперь даже слабого возбуждения сенсорного нейрона оказывается достаточно, чтобы возбудить моторный нейрон. Это и есть долговременная память . Остается добавить, что, как показали дальнейшие исследования, у высших животных и у нас с вами память основана на тех же принципах, что и у аплизии.

После этого необходимого вступления можно перейти к рассказу о том, что, собственно, открыли канадские и американские нейробиологи. Они исследовали формирование у лабораторных мышей условных рефлексов, связанных со страхом. Простейшие рефлексы такого рода формируются в латеральной амигдале (ЛА) - очень маленьком отделе мозга, отвечающем за реакции организма на всякие пугающие стимулы. Мышей приучали, что после того, как раздается определенный звук, их бьет током. В ответ на удар током мышь замирает: это стандартная реакция на испуг. Мыши - умные зверьки, их можно научить многому, и условные рефлексы у них формируются быстро. Обученные мыши замирают, едва заслышав звук, предвещающий опасность.

Ученые обнаружили, что сигнал от нейронов, воспринимающих звук, поступает примерно в 70% нейронов латеральной амигдалы. Однако изменения, связанные с формированием долговременной памяти (рост новых нервных окончаний и т. п.), у обученных мышей происходят лишь в четвертой части этих нейронов (примерно у 18% нейронов ЛА).

Ученые предположили, что между нейронами ЛА, потенциально способными принять участие в формировании долговременной памяти, происходит своеобразное соревнование за право отрастить новые синапсы, причем вероятность «успеха» того или иного нейрона зависит от концентрации белка CREB в его ядре. Чтобы проверить это предположение, мышам делались микроинъекции искусственных вирусов, не способных к размножению, но способных производить полноценный белок CREB либо его нефункциональный аналог CREB S133A . Гены обоих этих белков, вставленные в геном вируса, были «пришиты» к гену зеленого флуоресцирующего белка медузы. В итоге ядра тех нейронов ЛА, в которые попал вирус, начинали светиться зеленым.

Выяснилось, что в результате микроинъекции вирус проникает примерно в такое же количество нейронов ЛА, какое участвует в формировании условного рефлекса. Это случайное совпадение оказалось весьма удобным.

Помимо нормальных мышей, в опытах использовались мыши-мутанты, у которых не работает ген CREB. Такие мыши полностью лишены способности к обучению, они ничего не могут запомнить. Оказалось, что введение вируса, производящего CREB, в ЛА таких мышей полностью восстанавливает способность к формированию условного рефлекса. Но, может быть, увеличение концентрации CREB в некоторых нейронах ЛА просто усиливает реакцию «замирания»?

Чтобы проверить это, были поставлены опыты с более сложным обучением, в которых мышь должна была «осознать» связь между звуком и ударом тока не напрямую, а опосредованно, причем для этого требовалось запомнить определенный контекст, в котором происходило обучение. Для этого недостаточно работы одной лишь ЛА, а требуется еще и участие гиппокампа. В такой ситуации мыши-мутанты не смогли ничему научиться, ведь в гиппокамп им вирусов не вводили. Следовательно, концентрация CREB влияет именно на запоминание, а не на склонность к замиранию.

При помощи серии дополнительных экспериментов удалось доказать, что в запоминании у мышей-мутантов участвуют именно те нейроны ЛА, которые заразились вирусом. Введение вируса в ЛА здоровых мышей не повлияло на их обучаемость. Однако, как и в случае с мышами-мутантами, в запоминании участвовали именно те нейроны ЛА, в которые попал вирус.

Другой вирус, производящий CREB S133A , лишает зараженные нейроны способности запоминать, то есть отращивать новые окончания. Ученые предположили, что введение этого вируса в ЛА здоровых мышей не должно, тем не менее, снижать их обучаемость, поскольку вирус заражает лишь около 20% нейронов ЛА, и роль «запоминающих» возьмут на себя другие, незаразившиеся нейроны. Так и оказалось. Мыши обучались нормально, но среди нейронов, принявших участие в запоминании, практически не оказалось зараженных (то есть светящихся зеленым светом).

Ученые провели еще целый ряд сложных экспериментов, что позволило исключить все иные варианты объяснений, кроме одного - того самого, которое соответствовало их начальному предположению.

Таким образом, в запоминании участвуют не все нейроны, получающие необходимую для этого информацию (в данном случае - «сенсорную» информацию о звуке и «модулирующую» - об ударе током). Почетную роль запоминающих берет на себя лишь некоторая часть этих нейронов, а именно те, в ядрах которых оказалось больше белка CREB. Это, в общем, логично, поскольку высокая концентрация CREB в ядре как раз и делает такие нейроны наиболее «предрасположенными» к быстрому отращиванию новых окончаний.

Неясным остается механизм, посредством которого другие нейроны узнают, что дело уже сделано, победители названы и им самим уже не нужно ничего себе отращивать.

Этот механизм может быть довольно простым. Совершенно аналогичная система регуляции известна у нитчатых цианобактерий, нити которых состоят из двух типов клеток: обычных, занимающихся фотосинтезом, и специализированных «гетероцист», занимающихся фиксацией атмосферного азота. Система работает очень просто: когда сообществу недостает азота, фотосинтезирующие клетки начинают превращаться в гетероцисты. Процесс до определенного момента является обратимым. Клетки, зашедшие по этому пути достаточно далеко, начинают выделять сигнальное вещество, которое не дает превратиться в гетероцисты соседним клеткам. В результате получается нить с неким вполне определенным соотношением обычных клеток и гетероцист (например, 1:20), причем гетероцисты располагаются примерно на равном расстоянии друг от друга.

На мой взгляд, называть подобные регуляторные механизмы «конкуренцией», как это делают авторы статьи, не совсем правильно, акцент тут должен быть иной. Нейрон не получает никакой личной выгоды от того, что именно он примет участие в запоминании. По-моему, здесь уместнее говорить не о конкуренции, а о самой настоящей кооперации.

По материалам: Jin-Hee Han, Steven A. Kushner, Adelaide P. Yiu, Christy J. Cole, Anna Matynia, Robert A. Brown, Rachael L. Neve, John F. Guzowski, Alcino J. Silva, Sheena A. Josselyn. Neuronal Competition and Selection During Memory Formation 2007. V. 316. P. 457–460.









2024 © rukaraoke.ru.