Полевой шпат описание для детей 2. Полевой шпат — свойства минерала, применение и описание камня. Примерная схема изоморфизма в щелочных полевых шпатах



Полевой шпат – минерал, известный обывателю более на слух, чем на вид и тем более на ощупь. Да ученые минерологи, отмечая бесконечное разнообразие силикатов, относимых к шпатам, досконально изучили не более десятка видов – и предпочитают оперировать другими, узкими терминами.

А ведь на долю полевых шпатов приходится половина массы земной коры и две трети ее объема! Многие из горных пород фактически являются разновидностями шпатов, смешанных с теми или иными минеральными добавками.

Слово, пришедшее из Швеции

Выражение «полевой шпат» представляет собой кальку с немецкого feldspat, где feld – это «поле», а spat – слоистый, трещиноватый, пластинчатый камень. Что любопытно, немецкий минералогический термин образовался из шведского наименования, потому как именно в Швеции – а вовсе не в Германии – сельскохозяйственные угодья, располагающиеся на старых моренах, буквально усеяны кусками пластинчатого камня.

Слово «спайность» в русской минералогии произрастает из шведо-немецких корней, и вообще-то должно бы произноситься как «шпатность». Для неподготовленного слушателя «спайность» звучит почти как «спаянность», хотя значения у «спайности» и «спаянности» диаметрально противоположны.

Некоторые из полевых шпатов красивы

Минерологи объединяют в группу шпатов великое множество минералов, различая их по элементному составу. Геммологи идут эмпирическим путем, выделяя из полевых шпатов камни, достойные стать украшением.

Любой из полевых шпатов теоретически бесцветен и невзрачен – как и положено соединениям кремния. Однако без примесей подобные минералы практически не встречаются, и потому многие из шпатов весьма привлекательны внешне.



Классификация полевых шпатов

По химическому составу полевые шпаты подразделяются на калиевые, калиево-бариевые и натриево-кальциевые, называемые еще плагиоклазами. Плагиоклазов много разных; геммологи же особо выделяют альбит, являющийся составной частью солнечного камня. Альбитовые кристаллы ценят за редкость.

Еще более редок минерал цельзиан – калиево-бариевый шпат, встречающийся в виде вкраплений в метаморфических массивах. Ювелирной ценности зеленый или зеленовато-коричневый цельзиан не имеет, поскольку непрозрачен, но как коллекционный материал ценится весьма высоко.

Происхождение полевых шпатов...

...исключительно магматическое. Преобладание полевого шпата в коре планеты – свидетельство ее бурного вулканического прошлого, осложненного масштабными космическими катастрофами. Кто знает, каким минеральным составом удивляла бы людей родная планета, если б не события, повлекшие образование Луны.

На Луне, кстати, полевого шпата так же много, как и на Земле. Многие метеориты тоже содержат полевой шпат.

Вследствие чрезвычайной распространенности минерала, его добыча ведется на всех континентах. Лучшие лабрадоры поступают на рынок из Канады и Гренландии – хотя немало камней хорошего качества дает и Украина, и Бразилия, и Индия. Прекрасный амазонит, окрашенный в чередующиеся бирюзовые и бежевые цвета, был найден в Южной Америке, но добывается на российском севере и в магматических обнажениях Прибайкалья.

История происхождения названия специально исследована Зензеном и Спенсером. Термин впервые введен Тиласом в 1740 г. - feldtspat, от шведского, feldt или fait (поле, пашня) и немецкого spath (пластина, брусок). В “Минералогии” Валлериуса предложен другой термин - feltspat, от шведского, felt (моренное поле, ледниковая долина) и spat (табличка, выколоток по спайности). В немецком переводе “Минералогии” Валлериуса (1750) термин видоизменен как feldspath (“полевой шпат”), а в английском (1772) как fieldspar. В результате их смешения появился современный термин - feldspar. Кроме того, во 2-м издании “Минералогии” Кирвана (1794) использован термин felspa, от немецкого fels (скала, горная порода), т.е. “породообразующий” шпат.

Реже используются термины: felspar (английский), feldspath (французский).

Химический состав

По химическому составу полевые шпаты представляют собой алюмосиликаты и состоят из окиси алюминия (Аl 2 O 3 ), Окиси калия (К 2 О), окиси натрия (Na 2 O) или из Аl 2 O 3 , Na 2 O и окиси кальция (СаО) в сочетании с двуокисью кремния (SiO 2 ).

Полевые шпаты - главные породообразующие минералы многих магматических, метаморфических и осадочных пород с химическим составом М[Т 4 O 8 ], где М - щелочные, М + = (Н, Li, Na, К, Rb, Cs, Tl, 4 ) + или щелочноземельные, M 2+ = (Са, Sr, Ва, Pb, Еn) 2+ катионы, а Т - Si 4+ или заменяющие его в бесконечном кремнекислородном каркасе (А1, В, Fe, Ga) 3+ , (Ge) 4+ , осуществляющие анионную функцию в [ТО] 4 -тетраэдрах, компенсирующие заряд М-катионов.

Разновидности

Полевые шпаты классифицируются по химическому составу, кристаллической структуре и структурному состоянию (Si/Al-упорядоченности), чем исчерпываются все их “структурно-химические разновидности”. Целесообразно выделять “минеральные виды”, их “разновидности” (по химическому составу, структурным модификациям, по морфологическим особенностям, физическим свойствам) и типы “блок-кристаллов”.

Полевые шпаты составляют 50-60 мае. % земной коры; они наряду с кварцем , оливином , слюдами, пироксенами и амфиболами относятся к наиболее распространенным породообразующим минералам. Их значение необычайно велико. Среди них выделяют калий-натриевые (щелочные) полевые шпаты, составляющие подгруппу ортоклаза, к которой относятся собственно ортоклаз, натриевый ортоклаз, микроклин, анортоклаз, санидин, адуляр, и известково-натриевые, или натриево-кальциевые, полевые шпаты (подгруппа плагиоклаза).

Форма нахождения в природе

Для всех полевых шпатов характерны двойники роста (срастания, прорастания), а также двойники превращения, возникающие в результате фазовых превращений в полевошпатовых блок-кристаллах.

В нормальных двойниках (закон грани) двойниковая ось перпендикулярна плоскости срастания, которая одновременно является двойниковой плоскостью и плоскостью симметрии двойника (обычно это наиболее распространенная грань). В параллельных двойниках (закон оси) двойниковая ось лежит в плоскости срастания двойника, которой может быть любая грань, лежащая в зоне, ребром которой служит данная двойниковая ось. В сложных двойниках (сложные законы) двойниковая ось перпендикулярна одному из ребер и лежит в какой-либо важной кристаллографической плоскости, которая является плоскостью срастания двойников.
Иногда различают карлсбадский-А (плоскость срастания - (010)) и карлсбадский-В (плоскость срастания - (100)) двойники . Аклиновый-А закон рассматривается как частный случай периклинового закона с плоскостью срастания (001), а Ала-А и Ала-В законы - как частный случай эстерельского закона с плоскостями срастания (001) и (010).
Наиболее часто встречаются двойники с плоскостью срастания (010). Для моноклинных Калиевых полевых шпатов наиболее характерны карлсбадские, манебахские и бавенские двойники, для триклинных (Калиевые полевые шпаты, Na-полевые шпаты, плагиоклазы) - альбитовые, а также периклиновые и карлсбадские. Альбитовые и периклиновые двойники в моноклинных полевых шпатах вследствие их симметрии невозможны (хороший диагностический признак). Наоборот, в триклинных полевых шпатах они обычны.
Положение “ромбического сечения” зависит от химического состава полевого шпата. По этой причине различается ориентировка альбит-периклиновых двойников в микроклине и в существенно натриевом щелочном полевом шпате - анортоклазе: под микроскопом в микроклине в разрезах по (010) наблюдаются только периклиновые двойники (под углом 83° к трещинам спайности по (001)), в разрезе по (100) - только альбитовые двойники (параллельно трещинам спайности по (010)), а в разрезе по (001) - решетка из альбитовых и периклиновых двойников под углом 90° (микроклиновая решетка)", в анортоклазе в разрезах по (010) также наблюдаются только периклиновые двойники, но они почти параллельны (под углом всего 2-5°) трещинам спайности по (001), в разрезе по (100) - решетка из альбитовых и периклиновых двойников под углом 90°, а в разрезе по (001) - только альбитовые двойники, параллельные трещинам спайности по (010).
В полевых шпатах широко распространены комплексные двойники, для изучения которых Варданянцем разработана специальная теория “двойниковых триад”.
Структурное объяснение двойникованию дано Тэйлором с соавтарами на примере ортоклаза. Двойники связываются через общие для обоих сдвойникованных индивидов атомы кислорода, и благодаря тому, что они находятся на общих элементах симметрии, как бы продолжается рост единого монокристалла (в ориентировке каждого из сдвойникованных индивидов). При этом не происходит разрыва или существенного искажения четверных колец из [(Si,Аl)O 4 ]-тетраэдров в каркасе структуры. В манебахских двойниках плоскости симметрии (010) в обоих индивидах совпадают, а общие атомы кислорода O(Al) лежат на общих осях вращения. В бавенских двойниках общие атомы кислорода O(А2) находятся на плоскостях симметрии (010) или отклоняются от них всего на 0,2 А, а сами плоскости симметрии в двойниковых индивидах ориентированы под углом 90°. В карлсбадских двойниках два общих атома кислорода O(Al) и O(А2) лежат соответственно на оси вращения и плоскости симметрии (010) одного из индивидов, а другая пара общих атомов O(Аl) и O(А2) - на оси и плоскости (010) второго индивида. Поскольку атом O(Al) на высоте 4,7 А в двойнике и в монокристалле находится в одной и той же позиции (цепи Si-O-Si-O в двойнике отличаются от конфигурации в монокристалле только незначительным разворотом атомов кислорода вокруг атомов кремния в - и -тетраэдрах на высотах 4,1 и 5,05 А), образуются двойники срастания (“контактные двойники”) по плоскости (010). Однако так как она одновременно является и плоскостью симметрии, то возможны “правые” и “левые” двоиники. А поскольку ту же позицию занимают атомы O(Al) на высоте 1,8 А в цепи Si-O-Si-O второго двойникового индивида, в данном случае возможны также и двойники “прорастания”.


Альбитовые и периклиновые двойники в триклинных полевых шпатах, согласно Тэйлору с соавторами получаются соответственно отражением в плоскости (010) или вращением вокруг оси , которая близка к перпендиулярно (010). Поэтому (особенно при полисинтетическом двойниковании или при одновременном альбит-периклиновом двойниковании) двойник повышает свою симметрию до моноклинной. Для альбит-периклиновых двойников в микроклине (“М”-двойники, “микроклиновая” решетка) это является доказательством образования его из первично-моноклинного полевого шпата в результате твердофазовых превращений. В моноклинных полевых шпатах альбитовые и периклиновые двойники невозможны, так как = перпендикуляру (010).

Агрегаты.

Физические свойства

Оптические

Цвет. Окраска полевых шпатов разнообразная, как правило, светлая: белая, желтоватая, зеленоватая, красноватая, коричневатая. Зеленые и голубовато-зеленые разности носят название амазонита. Описаны янтарно-желтые железистые полевые шпаты.

Прозрачность. Прозрачные, водяно-прозрачные.

Показатели преломления

Ng = , Nm = и Np =

Механические

Твердость. 6-6,5.

Плотность. 2,54-2,57 для калиевых полевых шпатов, 2,62-2,65 для альбита, 2,74-2,76 для анортита, до 3,4 для цельзиана. Промежуточные значения - для K,Na- и Ca,Na-полевых шпатов.

Спайность. Все полевые шпаты имеют спайность в двух направлениях - под углом 90° или незначительно отличающемся от прямого (20" - в микроклине, 3,5-4°- в плагиоклазах), как правило, совершенную по (001) и совершенную или хорошую по (010). В этих направлениях разрывается наименьшее число тетраэдрических связей на единицу площади; при этом рвутся только связи между цепочками тетраэдров, но сохраняются четверные кольца.

Химические свойства

Полевые шпаты кислотоупорны, не растворяются в кислотах, кроме HF (К-полевые шпаты и альбит), или легко (анортит) или с трудом (основные плагиоклазы) разлагаются в концентрированной НСl с выделением студенистого осадка кремнезема.

Прочие свойства

Некоторые полевые шпаты обладают способностью опалесценции (адулярисценции), авантюрисценции или лабрадорисценции, которые в отечественной литературе обобщенно принято называть иризацией. Опалесценция дает мерцание в голубоватых, зеленоватых, жемчужно-белых и бледно-желтых тонах в K,Na-полевые шпаты. (криптопертитах) (лунные камни) и олигоклазах (беломориты) или переливчатую игру света в голубовато-сиреневых или серо-синих тонах, напоминающую отлив перьев на шее голубя (олигоклазы-перистериты), и вызвана пертитовым строением щелочных полевых шпатов или аналогичным явлением фазового распада в олигоклазах. Лабрадорисценция - аналогичное явление в лабрадорах (один из синонимов лабрадора - тавусит, от персидского “тавуси” - павлин). Авантюрисценция- яркое свечение минерала точечными бликами в оранжево-красных, ярко- желтых и малиновых тонах (солнечные камни), вызванное отражением света от мелких рассеянных пластинок гематита (в К-полевых шпатах, альбите или олигоклазе), ильменита или самородной меди (в лабрадорах).

Искусственное получение минерала

Синтез щелочных полевых шпатов состава (Na, К, Rb, NH 4 )[(Al, Ga, Fe, B)(Si, Ge) 3 O 8 ] осуществляется обычно из стекол стехиометричного состава сухим (при температуре 700-1000°) или гидротермальным (например, 550°, 1 кбар, 140 ч) путем. Впервые искусственные аналоги полевых шпатов составов NaGaSi 3 O 8 , NaAlGe 3 O 8 , NaGaGe 3 O 8 (триклинные) и KGaSi 3 O 8 , KAlGe 3 O 8 , KGaGe 3 O 8 (моноклинные) получены в , моноклинный RbAlSi3Og - в . Полевой шпат состава NaFeGe 3 O 8 не удалось синтезировать (вместо него в гидротермальных условиях кристаллизовался пироксен состава NaFe, а вместо CsAlSi 3 O 8 - поллуцит. Предполагалось, что Cs-noлевые шпаты не могут существовать из-за слишком большого размера атома Cs, так же как и Li-полевые шпаты, но, наоборот, из-за слишком маленького размера атома Li (Smith, Brown, 1988). Однако моноклинный CsAlSi 3 O 8 все же удалось получить ионным обменом между анальбитом или санидином и расплавом соли CsCl. Аналогичным путем были синтезированы полевые шпаты лития, водорода и серебра: LiAlSi 3 O 8 , HAlSi 3 O 8 и AgAlSi 3 O 8 .

Синтезированы также полевые шпаты состава K.

Render({ blockId: "R-A-248885-7", renderTo: "yandex_rtb_R-A-248885-7", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Диагностические признаки

Ортоклазы ассоциируются с кварцем, кислым плагиоклазом, мусковитом , биотитом и роговой обманкой . Анортоклазы - Ti-авгитом, апатитом , ильменитом . Плагиоклазы - спессартин , родонит , Mn - эпидот , санборнит, джиллеспит.

Происхождение и нахождение

Полевые шпаты являются главными породообразующими минералами магматических, метаморфических, ряда осадочных пород, пегматитов, метасоматитов и гидротермальных жил.

Полевые шпаты, будучи одними из главных породообразующих минералов, кристаллизуются следующим образом:
1. Из магматических расплавов гранитного, сиенитового, диоритового и габброидного состава.

2. В ходе постмагматических процессов (главным образом кислые плагиоклазы и щелочные полевые шпаты) - из пегматитовых расплавов, гидротермальных растворов, при процессах грейзенизации.

3. Путем ионного обмена в кристаллических сланцах (хлоритовые и слюдистые сланцы, слюдистые гнейсосланцы и гнейсы различных типов) как продукты бластеза (греч. «бластос» - росток, зародыш, почка) при средних температурах порядка нескольких сотен градусов (из твердого субстрата), т. е. при перекристаллизации вещества в твердом состоянии.

Разнообразие химического состава полевых шпатов послужило основой для классификации изверженных горных пород. В общем составе земной коры плагиоклазы занимают около 40%. Кислые плагиоклазы являются составными частями континентальных масс гранитного состава (сиаль); основные плагиоклазы входят в состав базальтово-габброидного нижнего слоя земной коры (оима).

Санидины характерны для кислых и щелочных вулканических пород: риолитов, трахитов, фонолитов и интрузий неглубокого залегания. Считается, что они гомогенны, но современные методы исследования показывают, что в большинстве они являются санидин-криптопертитами. В ультракремнекислых породах, таких как обсидианы и риолиты, могут образовывать сферолиты в срастании с кристобалитом и пучки игольчатых кристаллов. В метаморфических породах образуются в условиях санидиновой фации метаморфизма при высокой температуре и низком давлении. Иногда устанавливаются как аутигенные образования в осадочных породах.


Ортоклазы характерны для кислых и щелочных плутонических и вулканических пород, а также пегматитов в этих породах. Они типичны для метаморфических пород высокой степени метаморфизма, контактово-метасоматических образований. В случае высокого содержания натриевого компонента обычно представляют собой крипто- или микропертиты. Образуются в гидротермальных альпийских жилах (адуляр). Характерны для осадочных пород в зонах материкового сноса (аркозовые песчаники) и аутигенных новообразований в осадках разного состава (в том числе карбонатных).
Микроклин является обычным минералом плутонических фельзитовых (без вкрапленников) пород: гранитов, гранодиоритов, сиенитов и простых и сложных пегматитов в этих породах в ассоциации с кварцем, кислым плагиоклазом, мусковитом, биотитом и роговой обманкой. Характерен для метаморфических пород амфиболитовой фации и фации зеленых сланцев. Так же как и ортоклаз, является обычным обломочным минералом в детритовых осадочных породах, но может возникать и как аутигенное образование.
Высоконатриевые K,Na-полевые шпаты (анортоклазы) типичны для вулканических и гипабиссальных пород, сформировавшихся в условиях подъема температуры. Часто образуется в периферических каемках порфировых вкрапленников олигоклаза в щелочных сиенитах (ларвикиты и др.) или выделяется в виде гомогенного K,Ca,Na-полевые шпаты. (тройного). Обычно является криптопертитом. Ассоциирует с Ti-авгитом, апатитом, ильменитом.
Плагиоклазы широко распространены почти во всех типах изверженных и метаморфических пород и некоторых осадочных отложениях. Альбит и олигоклаз характерны для кислых пород: гранитов, гранодиоритов, риолитов, сиенитов, гранитных и сиенитовых пегматитов. Андезин типичен для пород средней кремнекислотности. Лабрадор и битовнит обычны в основных породах: - габброидах и базальтах - и являются главным минералом анортозитов. Анортит менее распространен и появляется в аномальных основных и ультраосновных породах. В метаморфических породах распространены обычно кислые и промежуточные плагиоклазы с содержанием An-компонента менее 50%, но содержание Са растет в породах более высокой степени метаморфизма. Анортит присутствует в скарнах и других контактово-метаморфизованных карбонатных породах. В осадочных породах плагиоклазы обычно присутствуют в виде обломочных зерен, но альбит часто возникает в них как аутигенное новообразование при диагенезе осадков.
Цельзиан характерен для метаморфических пород амфиболитовой фации метаморфизма, богатых Mn и Ва, где обычно постепенно переходит в гиалофан. В парагенезисе с ними типичны спессартин, родонит, Mn-эпидот, санборнит, джиллеспит и др. Бадингтонит - редкий минерал, образующийся из МН 4 - содержащих грунтовых вод. Установлен в ртутных киноварных рудах, породах фосфорной формации, в горючих сланцах. Образует псевдоморфозы по кислому плагиоклазу. Ридмерджнерит - редкий минерал, образующийся при обогащении пород бором. Установлен как аутигенный минерал в черных горючих сланцах и бурых доломитах , а также в щелочных породах осадочной формации Грин Ривер в США и щелочных пегматитах Дараи-Пиеза в Таджикистане.

Практическое применение

Полевые шпаты имеют важное практическое значение. Полевошпато-вое сырье используется в разных отраслях промышленности в качестве флюсующего, глиноземистого, щелочного или глиноземисто-щелочного компонентов, а также инертных наполнителей. Предпочтительны полевош-патовые породы с содержанием К 2 O + Na 2 Oболее 7 мас.%, СаО + MgO не более 2, Аl 2 O 3 более 11 и SiO 2 63-80%. Поэтому в качестве сырья используются в основном кислые (реже средние, щелочные) алюмосиликатные магматические, метаморфические или осадочные породы полевошпатового, кварц-полевошпатового, каолинит-полевошпат-кварцевого или нефелин-полевошпатового состава. Основные и ультраосновные породы практически не используются.
Общемировые запасы и ресурсы полевошпатового сырья не оценены. В России в настоящее время они составляют 115 млн т (52% запасов стран СНГ); из них 88 млн т (76%) приходится на гранитные пегматиты. Мировая добыча полевошпатового сырья составляет 5 млн т/год: Италия - 1500, США - 700, Франция - 400, Германия - 330, Таиланд - 330, Южная Корея - 240, Мексика - 200 тыс. т. В мировой добыче стран СНГ - 10-15%, из которых доля России около 48%, Казахстана - 30, Украины - 15, Узбекистана - 7%. Основной объем добычи в России приходится на Карелию и Мурманскую область.
По содержанию кварца сырье подразделяется на собственно полевош-патовое (кварца меньше 10%) и кварц-полевошпатовое (кварца больше 10%); по соотношению щелочей - на высококалиевое (“калиевый модуль” = K 2 O/Na 2 O > 3 мас. %), используемое в электротехнической и абразивной промышленности, а также для производства сварочных электродов, калиевое (“модуль” не менее 2), применяемое в электротехнической и фарфорофаянсовой промышленности, калиево-натриевое (“модуль” не менее 0,9), используемое для производства строительной керамики, и натриевое (“модуль” менее 0,9 или не нормирован), применяемое в стекольной промышленности и для производства эмалей типа “стекловидного фарфора”. Если присутствует нефелин, выделяют нефелин-полевошпатовое сырье.
Высококалиевые полевошпатовые материалы (с высоким “калиевым модулем” - выше 4, низким содержанием СаО и MgO - не более 1,5% и FeO и Fe 2 O 3 - не выше 0,15-0,30%) используются в электрокерамическом производстве для изготовления высоковольтных фарфоровых изоляторов, в качестве плавня и сцепляющей массы для производства шлифовальных и точильных абразивных изделий, для керамической обмазки (шлакообразующих изделий, стабилизирующих дугу) в производстве сварочных электродов, в фарфоро-фаянсовом производстве для получения прозрачных глазурных покрытий (“модуль” не менее 3). Полевошпатовые и кварц-полевошпатовые материалы с высоким “калиевым модулем” (2-3 и выше 3 для изделий высших марок) применяют в керамической промышленности в качестве плавня (флюса) для производства тонкой керамики (хозяйственный и художественный фарфор, электротехнический фарфор), калиево-натриевые кварц-полевошпатовые материалы (с низким “модулем” до 0,9) - для производства строительной керамики (санитарно-керамические изделия, облицовочные и отделочные плитки), а натриевые полевые шпаты (с ненормируемым “модулем”) - для производства низкотемпературного фарфора. Кварц- полевошпатовые и нефелин-полевошпатовые материалы используют также в качестве шихты для производства электровакуумного и высокосортного технического стекла, листового технического и оконного стекла и изделий из темно-зеленого и тарного стекла. Натриевые полевошпатовые материалы применяются для эмалевых покрытий чугунных и железных изделий, для увеличения их вязкости и химической стойкости.

Полевые шпаты используются в качестве наполнителя в лакокрасочной промышленности (получаемые краски более стойки, чем с карбонатным наполнителем, к воздействию кислотных дождей и солнечному свету и применяются для наружных работ), в резиновом производстве, при изготовлении опалесцирующего стекла, изразцов, черепицы, бетона, цемента, в стоматологии для производства искусственных зубов и др.
Новыми областями применения полевых шпатов (главным образом из низкокачественных и некондиционных полевошпатовых и нефелин-полевошпатовых материалов, что важно при решении экологических проблем и комплексного освоения месторождений) являются производство стеклокри-сталлических материалов (ситаллы и шлакоситаллы, используемые в строительстве, химической, горнодобывающей и электротехнической промышленности), теплоизоляционных материалов (пеностекло, применяемое в строительстве для изоляции стен и полов, холодильников и др.), а также вя-жущих материалов (пуццол и другие новые цементы), получаемых из сиштофа (стеклоподобной массы с примесью микроклина, эгирина и других со-путствующих минералов) и сульфатно-щелочных удобрений, получаемых из фосфогипса, - промышленных отходов, образующихся при кислотной (с H 2 SO 4 ) переработке хибинских апатит-нефелиновых руд в ходе получения фосфорных удобрений. Нефелин-полевошпатовые материалы используются для получения ангоба - керамической массы, припекаемой в виде глазурий к изделиям из легкого бетона (стеновым панелям и др.).

В последние годы к полевым шпатам привлечено внимание в связи с проблемой захоронения радиоактивных отходов. Вместо распространенной технологии остекловывания предложена фиксация радиоизотопов 90 Sr, 134 Cs и 137 Cs в полиминеральных матричных материалах, состоящих из Sr-содер-жащего полевого шпата с кварцевой оболочкой или поллуцита с оболочкой из К,Na-полевого шпата; эти материалы более устойчивы к выщелачиванию, чем стекла.

Lunar Ferroan Anorthosite

Alkali feldspar perthite (7cm long X 3cm width)

Полевые шпаты (рус. полевые шпаты , англ. feldspars; нем. Feldspate m pl, Feldspte m pl, Feldspat-Familie f, Feld-spatgruppe f ) - Группа наиболее распространенных породообразующий минералов класса силикатов каркасной структуры, которые характеризуются сравнительно высокой твердостью.

Полевик - староукраинское название полевых шпатов.


1. Общая характеристика

Полевые шпаты составляют ок. 50% массы земной коры. Примерно 60% их содержится в изверженных горных породах, в метаморфических - ок. 30%, в осадочных - 10-11%. Плотность 2,6-2,8. Соч. 6-6,5. По химическому составу - это алюмосиликаты натрия, кальция, калия, бария, как изоморфные примеси содержат рубидий , свинец , стронций и т.д.. С.ш. используются в стекольной, бумажной и других отраслях промышленности, некоторые полевые шпаты как облицовочный материал и поделочные камни.

С.ш. подразделяют на 3 группы:

Ортоклаз - калиевые полевые шпаты состава K 2 O.Al 2 O 3 .6 SiO 2. Встречаются в виде кристаллов, Иногда очень крупных, но в основном в виде мелкозернистых масс. Непрозрачные, имеют стеклянный или перламутровый блеск. Комплексное-натриевые полевые шпаты - состав Na 2 O.Al 2 O 3 .6 SiO 2. Встречаются в виде мелкозернистых масс. Более прозрачные, чем ортоклаз. Анортит-кальциевые полевые шпаты состава CaO.Al 2 O 3 .6 SiO 2. Образуют такие же кристаллы (всегда мелкие) и кристаллические массы, как ортоклаз и альбит.

Подгруппа плагиоклаза представляет собой непрерывный изоморфный ряд альбит Na и анортит Са . Для них характерна пластинчатая строение. В зависимости от содержания кальциевой (анортитовои) молекулы плагиоклазы делятся на 100 номеров. По содержанию SiO2 их разделяют на кислые (№ 0-30), средние (№ 30-50) и основные (№ 50-100). В подгруппе щелочных с.ш. наиболее распространенными являются ортоклаз и микроклин. Оба минерала имеют одинаковый состав К и отличаются лишь сингонии: ортоклаз моноклинной, а микроклин - Триклинная сингонии. Закономерные прорастания ортоклаза или микроклин альбитом называют пертит, а прорастание плагиоклаза ортоклазом или микроклином - антипертитом. К плагиоклаза относятся битовнит, лабрадор и другие минералы. Подгруппа гиалофанив (изоморфная смесь К и Ва ) встречается редко и практического значения не имеет. Из всех с.ш. крупнейший промышленный интерес представляют щелочные с.ш. В нашей стране почти 2/3 общей добычи полевошпатового сырья используется в стекольной промышленности и около 1/3 в керамической.


2. Горные породы и руды

Полевошпатовые изверженные горные породы непегматитового характера можно разделить на две подгруппы:

  • а) алюмосиликатные породы, состоящие преимущественно из полевых шпатов и кварца - граниты, фельзиты, Аплит, аляскиты и др..;
  • б) алюмосиликатные породы, в которых кварца нет, а полевой шпат заменен щелочными минералами - нефелиновые сиениты, миаскиты и др..

Среди них можно назвать месторождения аляскитив в США (Спрус-Пайн), тела измененных пород гранитного ряда (кора выветривания) в Англии, Польше, Японии, Франции. Одним из классических примеров этой подгруппы является месторождение Шеблув в Польше. Как полевошпатового сырья используют также грейзенизовани граниты с месторождения Сент-Стивенс (графство Корнуэлл, Англия). К этому типу относятся слюдяные граниты в Узбекистане (Лянгарське месторождение), альбититах в Казахстане (гора Аксоран), лейкократови граниты в Таджикистане (Такобське месторождение), мусковитовые граниты на Урале , гранитные массивы в Украине (Кировоградская область) и другие.

Наиболее высококачественными полевошпатовым рудами для стекольной и керамической промышленности являются крупнозернистые и гигант-зернистые полевошпатовые пегматитовых жили. Во многих странах используют также Аплит , полевошпатовые пески, изменены граниты, липариты , фельзит-порфиры и др.. За рубежом около 2/3 всей добычи полевого шпата приходится на пегматитов сырье.


3. Месторождения

Все месторождения полевошпатового сырья можно разделить на три группы:

  • 1. Гранитные и частично щелочные пегматиты.
  • 2. Полевошпатовые изверженные горные породы непегматитового характера.
  • 3. Полевошпатовые пески. Пегматиты являются комплексными месторождениями, и полевой шпат добывается из них как специально, так и попутно.

Крупнейшими месторождениями гранитных пегматитов являются месторождения в РФ (Карелия, Урал, Прибайкалье, Вост. Сибирь, Забайкалье, Дальний Восток), Швеции, Норвегии, США и других странах. Нефелиновые пегматиты известны на Урале (Вишневогорське месторождение и др.).. Крупные месторождения гранитных пегматитов есть в Украине (Елисеивське, Зеленая Могила).


4. Добыча

Feldspar output in 2005. Click the image for the details.

В конце ХХ в. в мире наблюдалось увеличение добычи с.ш. (Demand for feldspar in ceramics to increase / / Skill. Mining Rev. - 2000. - 89, 2. - Р. 8.). Мировая добыча с.ш. в 1998 г. составил 11,5 млн т, из них в Китае, Италии, Японии, Турции и США 63%. Промышленная добыча нефелинового сиенита проводится преимущественно в Канаде и Норвегии. В керамические-ном производстве потребления с.ш. и нефелинового сиенита составляет примерно 5,5 млн т / год или 41% от общего спроса. Ожидаемый рост потребления составляет примерно 10% в год. В стекольном производстве потребления полевого шпата и нефелинового сиенита составляет примерно 5750000 т / год с общим сокращением спроса за счет увеличения использования стеклянного боя.


Одним из самых многоликих, принимающих различные образы минералов является всем знакомый полевой шпат. Он входит в а некоторые его обработанные разновидности считаются полудрагоценными камнями: лабрадор, "лунный" камень, амазонит. Различные его виды неспециалист ни за что не отнесет к одному и тому же минералу - настолько он многолик. Он отличается довольно значительной твердостью - 6 по

Полевой шпат издавна используется людьми. Например, секрет тончайшего и высококачественного состоит именно в том, что в его составе содержится вышеупомянутый минерал. Сейчас он применяется при производстве стекла и керамики - зачем заново изобретать колесо? Ну и более или менее декоративные его разновидности используются для различного рода украшений.

Минерал очень распространен: до 50% земной коры, так или иначе - полевой шпат.

Декоративные его разновидности встречаются немного реже, но в мире есть несколько крупных месторождений.

Минерал шунгит состоит из углерода и водорода. Его довольно легко перепутаться с углем, но шунгит не горит. Считается, что этот минерал обладает уникальными свойствами, даже сейчас из него изготавливают пирамиды, сферы, лечебные пасты, приспособления для массажа и, конечно, ювелирные украшения. В промышленности он применяется в качестве материала для фильтров.

Шунгиту приписывают многочисленные лечебные свойства. По заверениям литотерапевтов, благодаря своей уникальной он способен очищать воду, вылечить астму, аллергию, ожоги, болезни суставов. Многие считают, что он также имеет возможность защитить поэтому довольно часто в квартирах можно увидеть рядом с компьютерами шунгитовые пирамидки. Кто знает, может, это и не лишено рационального зерна. В мире открыто только одно крупное месторождение шунгита, и оно располагается в Карелии.

Или пирит - минерал желтого цвета с красивым металлическим блеском. Во времена так называемой золотой лихорадки он становился частой добычей неопытных старателей, за что был прозван "золотом дураков". Впрочем,

отличить пирит от золота довольно легко - его нельзя поцарапать ножом, зато сам он без усилий царапает стекло.

Древние приписывали этому минералу особые свойства, они верили, что в нем скрыта душа огня, что и отразилось в его названии. Эта вера подтверждалась способностью пирита высекать искры при соударении со стальным предметом. В современной же литотерапии он занимает почетное место. Считается, что этот минерал нормализует и гармонизирует все процессы в организме. Пириту приписываются самые разные свойства: от защиты человека от негативных воздействий до подталкивания его на довольно сомнительные поступки.

Мир минералов очень интересен: загадочный шунгит, пирит, который средневековые алхимики тщетно пытались превратить в золото, полевой шпат, одновременно повсеместно распространенный и довольно редкий. Как тут устоять и не увлечься минералогией?

Полевой шпат – минерал, который по праву можно назвать подземным хозяином планеты. Он составляет более 50% массы земной коры и служит породообразующей основой для других полезных ископаемых. Наряду с кварцем и слюдой относится к магнетическим породам, которые возникают в результате застывания магмы и лавы. Играет важнейшую роль в строении и составе земной коры, образует твердые горные тела разного состава и формы.

Полевой шпат относится к классу силикатов, которые характеризуются сложным химическим составом и свойством атомов замещать другу друга в каркасной кристаллической решетке.

Основные химические элементы и соединения в составе минералов:

  • кремний, алюминий, железо, магний, марганец, кальций, калий и натрий;
  • бор, фтор, бериллий, литий, ценный титан и цирконий ;
  • кислород, водород и вода.

Месторождение и добыча

Месторождение полевого шпата разделяются на типы и способы добычи. К крупным залежам магматического происхождения относятся Каричсайское в Узбекистане и Бисембаевское в Казахстане, Спрус Пайн в США, Комадо в Японии, щелочные породы добываются БлуМа-унтине в Канаде, на Хибинском руднике в России. Гидротермальные слои шпата в Англии, там добывается так называемый корнвалийский камень и песчаники месторождений выветривания находятся в Хиршау в Германии.

Добываются глыбы полевого шпата открытым способом на карьерах и горных выработках. С использованием специальной техники и ручного труда осуществляется добыча ценного минерала на территории многих стран мира.

Виды и цвета полевого шпата

Минералы полевого шпата делятся на три основные группы по содержанию преобладающих химических элементов.

  • Ортоклазы – относятся к полевым шпатам с повышенным содержанием калия, в эту же группу входят микроклины, санидины и полудрагоценные адуляры. Все минералы этого класса имеют одну химическую формулу, отличаются друг от друга расположением атомов в кристаллической решетке.
  • Плагиоклазы – образуют группу кальциевых шпатов. В составе молекул натрий может частично замещать калий и создавать новые кристаллические модификации. Представителями этой группы являются известный лабрадор, андезин, олигоклаз и альбит производное от анортита с заменой в химической формуле кальция на натрий.
  • Цельзины – редкие шпаты гиалофаны, имеют в составе алюминий и барий. Кристаллы кремниевого цвета относятся к ценным коллекционным минералам.

Химический состав полевого шпата, включающий соединения различных окисей металлов и микропримеси редких элементов придает неповторимую окраску натуральным кристаллам. Перламутровый блеск и радужные переливы оттенков создаются за счет природных свойств минерала. Сине-черный лабрадор выделяется в ряду оранжевых и желтых гелиолитов, а нежные бежевые оттенки андезинов отличаются от светло-зеленых цветов амазонита .

Физические и химические свойства

Термин «полевой шпат» или Feldtspat был введен в 1794 году из-за частых находок брусков минералов на сельскохозяйственных угодьях.

Большинство минералов относятся к твердым растворам, соединением тройных систем изоморфных рядов. Металлы в составе шпатов образуют прочные соединения с кислородом и неметаллическими элементами серы, кремния, фтора и марганца.

Физические свойства шпата:

  • яркая цветовая гамма минералов;
  • стеклянный блеск поверхности;
  • по шкале Мооса твердость 5-6, прозрачность доходит до просвечивания;
  • кристаллические решетки атомов имеют триклинное или моноклинное строение;
  • совершенная спайность, образование ровных зеркальных поверхностей при расколе минеральных пород.

Натуральный шпат легко определить по его физическим свойствам. В руках он становится теплым, в стакане преломляет воду, на поверхности камня всегда имеется мелкие дефекты и сколы.

Химические свойства полевого шпата обусловлены составом минерала и связями атомов внутри элемента. В кристаллах с повышенным содержанием натрия возрастает показатель растворимости. Непрерывность молекулярных рядов проявляется при высоких температурах, в холодных условиях происходит разрыв связей с образованием минералов класса пертидов.

При интенсивном вымывании шпата водными растворами, минерал подвергаются гидролизу с образованием мелкочешуйчатых серицитов. Под воздействием соляной кислоты или водного раствора фтороводорода все натуральные минералы плавятся или разрушаются.

Плагиоклазы от ортоклазов различают методом химического воздействия. Пластинки шпатов обрабатывают плавиковой кислотой, а после помещают в специальный концентрированный раствор. Плагиоклазы (кроме альбита) приобретают характерный кирпичный оттенок.

При распаде полевого шпата образуется глина и другие осадочные породы.

Магические и лечебные свойства

Драгоценные камни по различным поверьям оказывают особое магическое воздействие на своего владельца. Ведуньи лечили людей, активно используя природные самоцветы. Целебные свойства доказаны многовековой практикой и сложно будет найти человека, который откажется иметь в своей коллекции нескольких сильных природных минералов. Народные лекари утверждают, с помощью натуральных шпатов можно излечить старый недуг, предотвратить проявление симптомов болезни и укрепить собственный иммунитет.

  • Лунный камень или адуляр — самая известная разновидность полевого шпата часто используется в производстве ювелирных изделий. Его обладательницы смело могут попрощаться с депрессией. Считается, что этот камень не просто спасает людей от частых эпилептических припадков и нормализует работу ЖКТ, но и облегчает родоразрешение. К его магическим свойствам причисляется способность помогать талантливым людям в их творческих начинаниях.
  • Чтобы избавиться от бессонницы и постоянных стрессов, часто используют лабрадор . Темный загадочный камень поддерживает здоровье суставов и позвоночных дисков. Женщины используют его, когда борются с хроническим бесплодием.
  • В магии черный лабрадор считается самым сильным минералом. Он позволяет своему хозяину развить интуитивные способности и дар ясновидения. Молодым и импульсивным людям такие камни противопоказаны, так как могут спровоцировать на безрассудные поступки. Однако такой талисман нередко позволяет раскрыть природные таланты человека и призвать ушедшее вдохновение к людям искусства.
  • Амазонский шпат или амазонит пойдет на пользу пожилым людям. Он обладает омолаживающими свойствами и регулирует баланс гормонального фона. Амазонит хорошо справляется с лихорадкой, снижает высокую температуру, и полезен для тех, кто желает сбросить вес. Его магия позволяет владельцу приобрести необходимую уверенность в себе, решительность в личной жизни и в карьерном росте.

Нельзя пренебрегать магическими свойствами минералов. Если удалось приобрести натуральный камень, то важно с умом использовать силу кристаллов, опираясь на знания и твердые убеждения.

Значение у знаков Зодиака

Различные виды полевого шпата благотворно влияют на представителей знаков зодиака. Главное, правильно подобрать минерал в соответствии с датой своего рождения.

  • К примеру, альбит подходит практически всем, но особое влияние оказывает на людей водной стихии и, в качестве исключения, на огненных Львов. Он обладает настоящими целебными и магическими свойствами.
  • Жемчужный полевой шпат, известный как лунный камень , особенно подходит Рыбам. Этот минерал станет верным талисманом для своего хозяина, будет оберегать, и приносить удачу. Огненным знакам (Овну, Льву, Стрельцу) украшения с этим камнем абсолютно противопоказаны.
  • Разновидность шпата амазонит категорически не рекомендуется Стрельцам. Овны и Тельцы находятся под покровительством этого камня, положительное влияние минерала сильнее всего сказывается именно на этих знаках. Камень используют в лечебных целях Девы и Весы, а также он поможет Рыбам установить внутренний баланс и вернуть нервную систему в равновесие.
  • Самоцвет лабрадор окажет положительное влияние на Овнов, Львов, Дев и Скорпионов. Ракам, Козерогам и Водолеям минерал не принесет особой пользы, и носить его на теле нежелательно.
  • Солнечный гелиолит оказывает положительное влияние на горячих Овнов и Львов. Рыбам и Близнецам стоит избегать этого шпата, он снижает их энергию и активность, подавляет самооценку и уверенность в себе.
  • Для творческих Раков и Рыб хорошо подходит талисман в виде ортоклаза. Этот камень считается оберегом любви, дарит владельцу силы и мудрость на жизненном пути. Однако этот же минерал негативно влияет на огненные знаки и сильно угнетает их волю и характер.

К выбору оберега нужно подходить ответственно, чтобы избежать негативного воздействия натурального камня. Важно помнить, что правильный талисман обязательно принесет своему владельцу удачу, достаток и счастье в личной жизни.

Область применения полевого шпата

Полевые шпаты как ценные природные минералы нашли широкое применение в разных сферах человеческой деятельности:

  • В металлургии применяется при плавлении в качестве флюсов, добавок к руде для обогащения металлов и отделении их от пустой породы.
  • В стекольном производстве служат исходным сырьем с богатым содержанием алюминия.
  • В керамической отрасли используются в качестве исходных материалов для производства фаянса и фарфора.
  • В косметической сфере и при изготовлении зубных препаратов минералы используются как абразивные полировочные элементы.

Отдельные разновидности полудрагоценных плагиоклазов обладают невероятной окраской и природными свойствами, они используются в качестве исходных материалов в тонком ювелирном искусстве.









2024 © rukaraoke.ru.