Как обозначается платина в таблице менделеева. Рутений: стоимость грамма металла и сферы его применения. Получение чистого металла


Автор неизвестен

Платина (Platinum , Pt) химический элемент под номером 78 в таблице Менделеева.

Бедность платиновых руд, отсутствие крупных месторождений и отсюда очень высокая стоимость металла в значительной степени ограничивают практическое применение платины. Платина весьма редко встречается в виде самородков. Крупнейший из них весит 9,6 кг.

По внешнему виду платина не представляет собой чего-либо выдающегося или бросающегося в глаза. Это белый с серым матовом отливом, тягучий (приближается к золоту) со значительной плотностью (21,5) и высокой температурой плавления (1774°С) металл. Исключительная химическая стойкость платины при самых высоких температурах позволяет назвать ее металлом химической лаборатории. Несмотря на то, что платина была известна еще в первой половине XVIII столетия (описана Р. Ватсоном в 1750 г.), а смутные упоминания о ней относятся к XVI столетию, практическое применение в технике платина впервые нашла лишь в 1809 г. при изготовлении реторт для хранения концентрированной серной кислоты. Первые месторождения самородной платины были обнаружены в Америке, где в XVII столетии испанские завоеватели во главе с Ф. Кортесом, разорив государство ацтеков, нашли на берегах реки Платино-дел-Пино (в Колумбии) новый металл. Название металла - "платина" произошло от испанского слова "плата" - серебро и означает "серебрецо". В самородном виде платина, помимо Америки (Бразилия, Колумбия), находится в Южно-Африканском Союзе. У нас на Урале коренные месторождения платины были обнаружены в 1892 г. А. А. Иностранцевым. Россыпные месторождения были найдены раньше, в 1819 г., но знаменитый Александр Гумбольдт, посетивший в 1829 г. месторождения платины, по поводу ее использования в своем отчете не написал ни одного слова.

Некоторое время платина считалась "никчемным" металлом. В Испанию завоеватели Южной Америки завезли очень много платины, и она продавалась дешевле серебра. Однако испанские ювелиры, обнаружив, что сплавы платины с золотом имеют большой удельный вес, решили использовать ее для изготовления, с точки зрения того времени, фальшивой золотой монеты. Узнав об этом, испанское правительство издало приказ об уничтожении всех запасов платины, и большое количество металла утопили в море.

Свойства платины впервые были описаны профессором Харьковского университета Ф. Гизе. Подробное изучение платины и способов ее получения из природной "сырой платины" было проведено русским химиком, вице-президентом Горной коллегии в Петербурге, почетным членом русской и многих иностранных Академий наук Мусиным-Пушкиным.

Следует отметить, что русским ученым принадлежит ведущая роль в изучении платины и других, сопутствующих ей металлов.

Высокая химическая стойкость платины обеспечила ей широкое применение для изготовления химической посуды (тигли, чашки, наконечники щипцов, насадки на горелки, электроды для анализа) и аппаратуры для химической промышленности.

Известны платиновые зеркала, их получают путем нанесения тончайшего слоя платины на стеклянную поверхность. Платиновые зеркала устойчивы, не тускнеют, дают чистое изображение, а главное обладают замечательной особенностью - односторонней прозрачностью. Сущность явления состоит в том, что со стороны источника света зеркало непрозрачно и отражает находящиеся перед ним предметы, в то время как с теневой стороны оно прозрачно и через зеркало можно все видеть так же хорошо, как через чистое стекло. Благодаря этой особенности платиновые зеркала получили в одно время широкое распространение в США. Их вставляли вместо стекол в окна нижних этажей контор, машинописных бюро и других учреждений, а также и жилых помещений, вместо занавесей и экранов.

Есть у платины и еще одно ценное свойство: она хорошо впаивается в стекло, что важно при изготовлении стеклянных приборов.

Принцип действия таких термометров сопротивления основан на способности платины изменять (увеличивать) электрическое сопротивление в строгой зависимости от повышения температуры. Если платиновую проволочку подключить к прибору, регистрирующему изменение сопротивления, то изменение температуры будет точно фиксироваться этим прибором. Шкалу прибора градуируют в градусах.

Платина - любимый металл ювелиров. В ювелирном искусстве платина играет роль отделочного материала по золоту.

Из платины сделано рельефное изображение В. И.. Ленина, помещенное в середине знака ордена Ленина - высшего ордена СССР. Первым орденом Ленина была награждена газета "Комсомольская правда".

Рыхлая, губчатая платина поглощает большое количество газов. Этим замечательным свойством объясняется удивительный факт: газ, заключенный в платиновый сосуд, при нагревании вытекает из герметически закрытого сосуда. Подобно тому, как вода проходит через частое сито, молекулы газа водорода или кислорода проходят через платиновые перегородки.

Мы перечислили многие интересные и ценные свойства платины, не касаясь самого важного: платина- один из самых активных катализаторов для различных химических процессов. Одним из важнейших каталитических процессов является окисление аммиака для получения азотной кислоты. Тончайшая сетка (до 5000 отверстий на квадратный сантиметр), сплетенная из платиновых проволочек, подобная тонкой ткани и столь же мягкая, как легкий шелк, составляет главную и ответственнейшую часть аппарата для окисления аммиака. Смесь аммиака с воздухом с быстротой урагана продувается через эту сетку, превращаясь в окислы азота и водяные пары. При растворении окислов азота в воде образуется азотная кислота.

Пионер отечественной азотнокислотной промышленности Иван Иванович Андреев, проведя большую научно-исследовательскую работу по изучению влияния различных катализаторов на окисление аммиака, обратил внимание на платину, введя ее в практику заводского получения азотной кислоты.

Шла первая мировая война. На полях сражений рвались снаряды, бомбы и мины, а в глубоких тылах лихорадочно работали заводы по производству металла, боеприпасов, взрывчатых веществ. Для производства взрывчатых веществ требовалось все больше и больше азотной кислоты, более 2 кг кислоты на каждый килограмм взрывчатки. К концу 1916 г. месячная потребность во взрывчатых веществах для русской армии составляла 6400 т. Все участвовавшие в войне государства испытывали острую нужду в сырье для получения азотной кислоты. Оно имелось только в Южной Америке (Чили), и во всех странах шли лихорадочные поиски сырья для изготовления азотной кислоты. Одним из видов его является аммиак, содержащийся в отходах коксового производства. Чтобы превратить аммиак в азотную кислоту, его нужно окислить. Зная, что аммиак окисляется в присутствии платины, И. И. Андреев проектирует завод, который вскоре был построен в Донбассе и вступил в строй в июле 1917 г.

Различные химические соединения, в состав которых входит платина, значительного применения пока не имеют. (Некоторые используются в аналитической химии для количественного определения калия) . Однако исследования этих соединений внесли большой вклад в теорию химии. Соединения платины наиболее полно изучены русскими учеными Л. А. Чугаевым, И. И. Черняевым, О. Е. Звягинцевым.

Существующее представление о том, что платина не взаимодействует с кислородом воздуха, как показали исследования, не соответствует действительности. Так при комнатной температуре на платине образуется тончайшая пленка (около 30 ангстрем), которая улетучивается при небольшом нагревании в вакууме.


Платина, Platinum, Pt (78)

Платина (англ. Platinum, франц. Platine, нем. Platin), вероятно, была известна еще в древности. Первое описание платины как металла весьма огнестойкого, который можно расплавить лишь с помощью "испанского искусства", сделал итальянский врач Скалингер в 1557 г. По-видимому, тогда же металл получил и свое название "платина". Оно отображает пренебрежительное отношение к металлу, как мало к чему пригодному и не поддающемуся обработке. Слово "платина" произошло от испанского названия серебра - плата (Plata) и представляет собой уменьшительную форму этого слова, которое по-русски звучит, как серебрецо, серебришко (по Менделееву - серебрец). Интересно отметить, что слово платина созвучно русскому "плата" (платить, оплата и пр.) и близко ему по смыслу. В XVII в. платина называлась Platina del Pinto, так как она добывалась в золотистом песке реки Пинто в Южной Америке; существовало и другое название подобного рода - Platina del Tinto от реки Rio del Tinto в Андалузии. Более подробно платину описал в 1748 г. де Уоллоа - испанский математик, мореплаватель и торговец. Начиная со второй половины XVIII в. платиной, ее свойствами, методами переработки и использования стали интересоваться многие химики-аналитики и технологи, в том числе и ученые Петербургской академии наук. Наиболее важные работы в этой области в первой половине XIX в.- это создание методов получения ковкой платины (Соболевский, Волластон и др.), открытие ее некоторых соединений (Мусин-Пушкин и др.) и металлов платиновой группы.

Обозначается знаком Pt.

История платины

Древний мир уже знал металлическую платину. При археологических раскопках в Египте в руинах древних Фив был найден художественной работы футляр, относимый специалистами к VII в. до н. э. В этой реликвии древнего мира находилось зерно богатой иридием платины.

В начале I в. н. э. промывальщики золотоносных песков в Испании и Португалии стали проявлять заметный интерес к полезному использованию «белого свинца», или «белого золота», как тогда называли платину. По свидетельству римского писателя Плиния Старшего (автора 37-томной книги «Естественная история»), «белый свинец » добывался из золотых россыпей Валиссии (Северо-западная Испания) и Лузитании (Португалия). Плиний рассказывает, что «белый свинец» собирался при промывке вместе с золотом на дно корзин и плавился отдельно.

Задолго до захвата Южной Америки испанскими и португальскими конкистадорами - платина добывалась культурным туземным народом - инками, не только владевшими секретом очистки и ковки этого драгоценного металла, но и умевшими искусно выделывать из него различные предметы и украшения.

Эпоха падения Римской империи знаменуется исчезновением из обихода ювелиров и торговцев драгоценностями из платины. Прошло много столетий, и только во второй половине XVIII в. платиной и ее физико-химическими свойствами начали интересоваться ученые.

В 1735 году испанский математик Антонио де-Ульоа, находясь в Экваториальной Колумбии, обратил внимание на частое нахождение совместно с золотом неизвестного ему металла, блеск которого несколько напоминал блеск серебра, но всеми прочими качествами более походившего на золото . Этот диковинный металл заинтересовал де-Ульоа, и он привез в Испанию образцы колумбийской платины.

В XVIII столетии, когда платина еще не имела промышленного применения, ее подмешивали к золоту и к золотым и серебряным изделиям. Об этой «порче» драгоценных металлов узнало испанское правительство. Опасаясь возможности массовой подделки золотой монеты, оно решило уничтожать всю платину, добываемую совместно с золотом в колониальных владениях королевства. В 1735 году был издан декрет, предписывавший уничтожать всю добывающуюся в Колумбии платину. Этот декрет действовал несколько десятилетий. Специальные чиновники в присутствии свидетелей периодически бросали наличные запасы платины в реку.

В конце XVIII в. испанские короли сами стали «портить» золотую монету, подмешивая к ней платину.

Техническое использование платины

В 1752 году директор шведского монетного двора Шеффер объявил об открытии им нового химического элемента - платины. Спутники платины - палладий, иридий, родий, рутений и осмий - были открыты значительно позднее, в XIX веке. Шесть перечисленных химических элементов, стоящих в восьмой группе периодической системы Менделеева, составляют группу, именуемую платиновыми металлами. Все эти металлы обладают многими сходными физическими и химическими свойствами и встречаются в природе большей частью совместно.

На заре внедрения платины в технику ученые занимались ею большей частью из одного любопытства, но по мере углубленного изучения свойств платины она довольно быстро начала находить широкое применение, особенно в химической промышленности. Оказалось, что платина растворима только в царской водке, нерастворима в кислотах и постоянна при накаливании.

Вслед за появлением первых образцов химической посуды, изготовленной из платины, ее начали применять для изготовления перегонных аппаратов для серной кислоты. С этого момента стал резко увеличиваться рост обработки платины, так как ею стали пользоваться в производстве кислотоупорной и жароустойчивой лабораторной химической аппаратуры, инструментов и различных приборов (тиглей, колб, котлов, щипцов и т. д).

В пирометрии используют исключительную устойчивость платины и ее сплавов к высоким температурам.


Ценные, а порой незаменимые свойства платины и палладия уже давно используются в каталитических процессах. Значительное количество платины расходуется на изготовление контакта для сернокислотных заводов, где она служит катализатором при окислении сернистого газа в серный ангидрид. Платина в виде сетки служит катализатором при окислении аммиака в аппаратах различных систем. Многочисленные органические синтезы также требуют применения платинового катализатора. Палладиевый катализатор применяется в производстве синтетического аммиака и при получении некоторых органических препаратов. В производстве синтетического аммиака по Габеру-Росеннолю применяется также осмий.

В электротехнике платиновые металлы, как правило, применяются в виде сплавов. Вот далеко не полный список деталей электроаппаратов, где используются платиновые сплавы: иглы для выжигания, приборы для электрических измерений, электроды (катоды и антикатоды для рентгеновских трубок), проволоки и ленты для сопротивлений электрических печей, контакты магнето (автомобили, двигатели внутреннего сгорания), контактные точки (телеграфия, телефония), наконечники громоотводов и т. д.

В электрохимии платина применяется при получении различных электролитических продуктов. Медицина и зубоврачевание являются одними из старейших потребителей платины. Отметим также применение платины для хирургии в виде наконечников приборов, служащих для прижигания, шприцев для впрыскивания и вливания и т. п.

Ювелирное искусство занимает ведущее положение как потребитель платины в виде сплавов. Платиновые оправы для драгоценных камней дают лучший блеск и более чистую воду, чем оправы из других благородных металлов.

Наконец, в виде солей платина и ее спутники требуются для фотографии, для изготовления лекарственных препаратов (соли родия и рутения) и для приготовления красок по фарфору (родий, иридий - черная краска, палладий - серебристая).

Платина используется и в военном доле, например для изготовления контактов, служащих для производства детонации при взрыве мин, и т. п.


Применение платины

Добыча платины

Первое место в мировой добыче платины принадлежит району Онтарио в Канаде. Здесь в 1856 году были открыты крупные месторождения медно-никелевых руд Сюдбери, в которых на ряду с золотом и серебром присутствует и платина.

До первой мировой войны канадская платина не привлекала к себе внимания, и практический интерес к ней возник только в 1919 году, когда вследствие гражданской войны на Урале добыча русской платины сильно упала, и мировой рынок стал ощущать большой недостаток в этом ценном металле. С 1919 года шламы медно-никелевого производства Сюдбери стали подвергать тщательной переработке с целью извлечения металлов платиновой группы, тем более что себестоимость попутной добычи платины и ее спутников очень низка.

Второе место в мире по добыче платины занимает Россия. Заметные количества платины добываются в Колумбии. Из других стран, производящих платину, можно указать Эфиопию и Конго. Добытая непосредственно из недр платина, а также платина, полученная из руд, подвергается специальной обработке или аффинажу. Аффинаж состоит из обычных процессов, применяемых в небольших масштабах в практике аналитических лабораторий - растворения, выпаривания, фильтрования, осаждения и т. д. В результате этих операций получается чистая платина и раздельно ее спутники.


Добыча платины

Месторождения платины в России

Главной платиноносной провинцией Урала является западная зона глубинных изверженных пород, непрерывно прослеживающихся на протяжении 300 км в области Среднего Урала. Месторождения платины в этой зоне связаны, главным образом, с изверженными породами. При выветривании и разрушении этих пород и при перемывании продуктов выветривания реками образуются чисто платиновые россыпи, представляющие исключительную особенность Урала и давшие главную массу добытой до сих пор платины.

В области восточной зоны глубинных изверженных пород находится ряд менее ценных месторождений платины. Здесь платина встречается совместно с золотом и осмистым иридием. Благодаря разрушению и размыванию этих пород образуются смешанные золото-платиновые и золото-осмисто-иридиево-платиновые россыпи, менее ценные с точки зрения добычи платины, которая является здесь лишь примесью к золоту.

Уральская платина до войны 1914-1918 гг. занимала первое место на мировом рынке. В первой половине XIX в. (с 1828 по 1839 г.) в России из уральской платины чеканилась монета. Однако чеканка такой монеты была прекращена вследствие неустойчивости курса на платину и ввоза в Россию поддельной монеты.

Несмотря на то, что в России аффинажем платины начали заниматься тотчас же после открытия на Урале платиновых месторождений. до революции количество перерабатывавшейся в нашей стране платины составляло всего 10-13% добываемого металла. Большая часть сырой платины и полупродукты аффинажа вывозились за границу.

В Москве уже боле 100 лет существует аффинажный завод, где занимаются механической переработкой аффинированной платины и сплавов. Здесь же производят ковку, прокатку, протяжку проволоки, изготовление химической посуды, сетки электродов, контактов, пирометров, электронагревательных приборов и других изделий.


Московский аффинажный завод

ПЛАТИНА (лат. Platinum)

Общие сведения

Химический элемент таблицы Менделеева, металл.
Символ элемента : Pt.
Атомный номер : 78.
Положение в таблице : 6-й период, группа - VIIIB(10).
Относительная атомная масса : 195,083.
Степени окисления : +2, +3, +4, +6 и редко +5.
валентности : II, III, IV, V, VI.
Электроотрицательность : 2,2.
Электронная конфигурация : 5s 2 p 6 d 9 6 s 1 .
Платина состоит из четырех стабильных изотопов 194 Pt (32,9%), 195 Pt (33,8%), 196 Pt (25,2%), 198 Pt (7,2%) и двух слабо радиоактивных 190 Pt (0,013 %, период полураспадаТ 1/2 = 6,9·10 11 лет), 192 Pt (0,78 %,Т 1/2 = 10 15 лет).

Строение атома

Число электронов : 78.
Радиус атома 0,138 нм, ионный радиус иона Pt 2+ — 0,074 (координационное число 4), Pt 2+ — 0,094 (6), Pt 4+ — 0,0765 (6), Pt 5+ — 0.071 нм (6). Энергии ионизации Pt 0 — Pt + — Pt 2+ — Pt 3+ равны 9,0, 18,56, 23,6 эВ.

История открытия

Платина известна человечеству с древнейших времен. Изделия, содержащие платину, найдены при раскопках древнеегипетских гробниц и древнеиндейских поселений в Колумбии. Первое описание платины в Европе сделал А. де Ульолоа, который участвовал во французской экспедиции в 1736 с целью определения длины экватора. В его записях упоминается благородный металл platina, найденный в колумбийских золотых рудниках.
В 1741 южноамериканские образцы металла были доставлены в Европу, где сначала платину рассматривали как «белое золото». В середине 18 века была установлена элементарная природа платины. В настоящее время «белым золотом» называют сплавы золота и платины. Расплавить чистую платину удалось в 1783 А. Л. Лавуазье.

Получение

Производство платины в виде порошка началось в 1805 англичанином У. Х. Волластоном из южноамериканской руды.
В настоящее время платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO 3 . При этом иридий и палладий восстанавливаются до Ir 3+ и Pd 2+ . Последующим добавлением хлорида аммония выделяют (NH 4) 2 PtCl 6 . Высушенный осадок прокаливают при 800-1000°C:
(NH 4) 2 PtCl 6 = N 2 + 6HCl + Pt + H 2 .
Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH 4) 2 PtCl 6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении платиновых растворов химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

Нахождение в природе

Платина — один из наиболее редких элементов, ее содержание в земной коре 5·10 -7 % по массе. Она встречается в природе в сульфидных, медно-никелевых и медно-молибденовых рудах, в виде самородков и самородных сплавов с иридием или палладием. Минералы платины: PtAs 2 (сперрилит), PtS (куперит), (Pt,Pd,Ni)S (брэггит).

Физические и химические свойства

Платина — тугоплавкий тяжелый (плотность при 20°C 21,45 г/см 3) серебристо-белый металл. Имеет кубическую гранецентрированную решетку,a = 0,392 нм. Температура плавления 1769°C, кипения 4170°C. Проявляет свойства парамагнетика. Металлическая платина хорошо поддается прокату и сварке. В ряду стандартных потенциалов платина расположена правее водорода и с неокисляющими кислотами и водой не реагирует.
По химическим свойствам платина похожа на палладий, но проявляет большую химическую устойчивость. Реагирует только с горячей царской водкой:
3Pt + 4HNO 3 +18HCl = 3H 2 + 4NO + 8H 2 O
Платина медленно растворяется в горячей серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):
Pt + 2Cl 2 + 2NaCl = Na 2 .
При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объем поглощаемого водорода меньше и способность его отдавать при нагревании у платины меньше.
При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: черный PtO, коричневый PtO 2 , красновато-коричневый PtO 3 , а также Pt 2 O 3 и Pt 3 O 4 .
Для платины известны гидроксиды Pt(OH) 2 и Pt(OH) 4 . Получают их при щелочном гидролизе соответствующих хлорплатинатов, например:
Na 2 PtCl 4 + 2NaOH = 4NaCl + Pt(OH) 2 (осадок) ,
Na 2 PtCl 6 + 4NaOH = 6NaCl + Pt(OH) 4 (осадок) .
Эти гидроксиды проявляют амфотерные свойства:
Pt(OH) 2 + 2NaOH = Na 2 ,
Pt(OH) 2 +4HCl = H 2 + 2H 2 O,
Pt(OH) 4 + 6HCl = H 2 + 4H 2 O,
Pt(OH) 4 + 2NaOH = Na 2 .
Гексафторид PtF 6 — один из сильнейших окислителей, способный окислить молекулы кислорода, ксенона или NO:
O 2 + PtF 6 = O 2 + - .
C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF 6 , приводящего к образованию XePtF 6 , началась химия инертных газов. PtF 6 получают фторированием платины при 1000 °C под давлением.
Фторирование платины при нормальным давлении и температуре 350-400 °C дает фторид Pt(IV):
Pt + 2F 2 = PtF 4
Фториды платины гигроскопичны и разлагаются водой.
Тетрахлорид платины (IV) с водой образует гидраты PtCl 4 ·nH 2 O, где n = 1, 4, 5 и 7. Растворением PtCl 4 в соляной кислоте получают платинохлористоводородные кислоты H и H 2 .
Синтезированы такие галогениды платины как PtBr 4 , PtCl 2 , PtCl 2 ·2PtCl 3 , PtBr 2 и PtI 2 .
Для платины характерно образование комплексных соединений состава 2- и 2- . Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

Применение

Основное применение платина, ее сплавы и соединения находят в автомобилестроении (30-65%), в качестве катализатора для дожигания выхлопных газов автомобилей. 7-12% платины используется в нефтеперерабатывающей промышленности и органическом синтезе (в процессах гидрирования углеводородов), 7-13% — в электротехнике и электронике, 3-17% — в стекольной и керамической промышленности, 2-35% — для изготовления зубных протезов и ювелирных изделий.

Физиологическая роль

Все соединения платины — сильные окислители. И требуют осторожного обращения.









2024 © rukaraoke.ru.