Множество значений отношения x y 1 равно. Бинарные отношения и их свойства


которых может быть отрицательной величиной, например, труд. Но потребление труда потребителем не может превосходить естественно определенной величины - 24 часа.

Свойство «продолжаемости вверх» означает, что, потенциально, потребителю доступно неограниченное количество блага. Конечно, этого свойства хотелось бы избежать, и во многих современных работах, например, по общему равновесию, оно отсутствует, но ряд основных классических результатов теории потребителя значительно проще формулируется и получается в случае его выполнения. Действительно, при отсутствии этого свойства мы уже, например, не можем быть уверены о том, что потребитель израсходует весь получаемый им доход (т. е. что выбор потребителя принадлежит бюджетной линии).

Наконец, поясним значение свойства выпуклости. Выпуклость множества X - не такое безобидное и естественное предположение, как может показаться на первый взгляд. Существует достаточное число содержательных экономических вопросов, при изучении которых данное предположение неприемлемо. Например, некоторые из рассматриваемых благ могут потребляться исключительно в дискретных количествах. Подобная ситуация значительно усложняет дело и требует более тонких рассуждений, на которых мы не останавливаемся.

Свойство 0 X имеет достаточно прозрачный смысл, оно фактически означает, что потребитель потенциально может ничего не потреблять. Такая ситуация не означает что это будет его выбором, но мы признаем за ним такую возможность. Иногда бывает удобно предполагать, что множество допустимых альтернатив представляет собой неотрицательный ортант Rl + , т. е. X = Rl + . В дальнейшем, в каждом конкретном случае, будет либо указано, либо ясно из контекста, какой из вышеприведенных случаев имеется в виду8 .

Как мы уже говорили выше, в основе поведения потребителя лежат его предпочтения, в соответствии с которыми он осуществляет выбор между доступными ему наборами из множества допустимых альтернатив. Естественным языком для обсуждения концепции предпочтений является теория бинарных отношений, краткое описание которой дается в следующем параграфе.

2.2 Бинарные отношения и их свойства

Чтобы мотивировать и пояснить понятие бинарного отношения, рассмотрим известную детскую игру «камень-ножницы-бумага». Предполагается, что: камень побеждает ножницы (тупит), ножницы побеждают бумагу (режут), бумага побеждает камень (оборачивает), в остальных случаях (например, камень - камень) - боевая ничья. Будем говорить, что x находится в отношении R к y и писать x R y, в случае, если x побеждает y, где x и y принадлежат множеству {камень, ножницы, бумага}. Естественно отождествить отношение R с множеством, элементами которого являются упорядоченные пары9 hкамень, ножницыi, hножницы, бумагаi, hбумага, каменьi и только они. Отметим, что так определенное отношение (множество) R, очевидно, является подмножеством множества, состоящего из всевозможных упорядоченных пар, где каждый элемент пробегает множество {камень, ножницы, бумага}.

Этот простой пример приводит нас к следующему определению бинарного отношения.

Определение 1:

Пусть X - произвольное непустое множество. Декартовым квадратом множества X назовем множество, обозначаемое X × X , элементами которого являются всевозможные упорядоченные пары hx, yi, где x, y пробегают все множество X . Под бинарным отношением R, заданным на множестве X , будем понимать, некоторое подмножество декартова квадрата X × X , т. е. формально R X × X .

8 Более подробное обсуждение понятия блага и множества допустимых альтернатив см. в книге Э. Маленво:

Лекции по микроэкономическому анализу, М.: Наука, 1985, гл. 1, § 3 и гл. 2, § 4.

9 Выражение «упорядоченная пара» означает, что пары ha, bi и hb, ai считаются различными.

2.2. Бинарные отношения и их свойства

Другими словами бинарное отношение - это некоторое множество упорядоченных пар hx, yi, где x и y - элементы множества X . Понятие бинарного отношения имеет достаточно простую графическую иллюстрацию (см. Рис. 2.1 ).

Рис. 2.1. Бинарное отношение R, заданное на множестве X

При рассмотрении бинарных отношений в случае, когда пара hx, yi принадлежит множеству R, вместо hx, yi R обычно пишут x R y и говорят, что x находится в отношении R к y.

Определим теперь некоторые свойства бинарных отношений, которые мы в дальнейшем будем использовать при рассмотрении предпочтений 10 .

Определение 2:

Бинарное отношение R называется

рефлексивным , если x X выполнено x R x

иррефлексивным 11 , если x R x не выполняется ни при каком x X (т. е. x X(x R x));

симметричным , если x, y X из x R y следует y R x;

Асимметричным , если x, y X из x R y следует, что y R x неверно;

Транзитивным , если x, y, z X выполнено

(x R y и y R z) x R z;

отрицательно транзитивным , если x, y, z X выполнено

((x R y) и(y R z))(x R z);

Полным , если x, y X выполнено либо x R y, либо y R x, либо и то и другое.

Проиллюстрируем эти свойства бинарных отношений на примерах.

11 Часто это свойство также называют нерефлексивностью, но такая терминология приводит к парадоксальным выражениям. Например, «бинарное отношение не является ни рефлексивным, ни нерефлексивным». Чтобы избежать этой игры слов, мы и используем термин «иррефлексивность».

2.2. Бинарные отношения и их свойства

Пусть X - множество студентов, учащихся в этом учебном году в Новосибирском Государственном Университете, R - отношение «выше ростом, чем» заданное на X . Посмотрим, каким из указанных выше свойств удовлетворяет данное бинарное отношение.

Очевидно, что какого бы мы студента ни взяли, его рост не может быть больше его же роста, т. е., например, 175 не может быть больше 175. Таким образом, это отношение является иррефлексивным и не удовлетворяет свойству рефлексивности.

Это отношение также является асимметричным и не является симметричным. Действительно, пусть h(a) - рост некоторого студента a, а h(b) - рост студента b, и a R b, т. е. студент a имеет больший рост, чем b (h(a) > h(b)). Тогда вполне понятно, что неверно (h(b) > h(a)), что и означает, что неверно b R a. Таким образом, с учетом произвольности выбора a и b получили желаемое.

Проверим теперь, что данное отношение является транзитивным. Из множества X возьмем трех произвольных студентов a, b, c, чей рост составляет h(a), h(b) и h(c) соответственно, причем выполнено следующее: h(a) > h(b) и h(b) > h(c). Очевидно, что по свойству сравнения действительных чисел мы имеем, что h(a) > h(c). Это в точности означает, что a R c и мы, таким образом, показали транзитивность R.

Выполнение свойства отрицательной транзитивности мы проверим чуть позже, а сейчас перейдем к проверке свойства полноты. Как несложно понять, данное отношение не является полным, если среди студентов есть хотя бы двое с одинаковым ростом. В этом случае ни один из этих двух студентов не будет выше другого и, таким образом, мы имеем нарушение полноты. Если же среди нашего множества X нет ни одной пары студентов с одинаковым ростом, то введенное на X отношение «выше ростом, чем» обладает свойством полноты. 4

Пусть на множестве X = R2 + задано отношение R по правилу (x1 , x2 ) R (y1 , y2 ) x1 + y2 > y1 + x2 . Перед тем как отвечать на вопрос о том, каким свойствам удовлетворяет данное бинарное отношение, заметим, что x1 + y2 > y1 + x2 x1 − x2 > y1 − y2 , т. е. (x1 , x2 ) R (y1 , y2 ) x1 − x2 > y1 − y2 . Как несложно догадаться, данное бинарное отношение удовлетворяет тем же свойствам, что и отношение > на действительной прямой, т. е. полнота, транзитивность, рефлексивность. (Проверьте самостоятельно выполнение/невыполнение усло-

Замечание: При проверке указанных выше свойств предпочтений следует быть осторожным и не делать поспешных выводов. В частности, если окажется, что отношение не является рефлексивным, то из этого, вообще говоря, не следует, что отношение является иррефлексивным. Та же ситуация возникает при рассмотрении связки свойств симметричность/асимметричность.

Эти определения также легко проиллюстрировать графически в духе Рис. 2.1 . Так, например, рефлексивность означает, что вся диагональ декартова квадрата X ×X принадлежит R. Свойство симметричности означает, что множество R симметрично относительно диагонали декартова квадрата. Полнота означает, что если мы «согнем по диагонали» декартов квадрат, то в итоге получим треугольник без выколотых точек.

Выше мы ввели и обсудили ряд часто встречающихся свойств бинарных отношений. Теперь рассмотрим взаимосвязь между этими свойствами.

Теорема 1:

Каждое асимметричное бинарное отношение является иррефлексивным.

Каждое полное бинарное отношение является рефлексивным.

2.2. Бинарные отношения и их свойства

Каждое иррефлексивное и транзитивное бинарное отношение является асимметричным.

Отношение R является отрицательно транзитивным тогда и только тогда, когда

x, y, z X из x R y следует x R z или z R y.

Доказательство: Доказательство свойств тривиально. С целью демонстрации техники доказательства мы докажем только третий пункт теоремы.

Предположим противное, т. е. пусть отношение R иррефлексивно, транзитивно, но не является асимметричным. Тогда найдется пара x, y X такая, что x R y и y R x. Так как отношение R транзитивно, то из x R y и y R x следует x R x. Получили противоречие с иррефлексивностью.

Пример 3 (продолжение Примера 1 ):

Нам осталось проверить свойство отрицательной транзитивности. Для его проверки воспользуемся представлением этого свойства из только что доказанного утверждения. Для этого из множества X возьмем трех произвольных студентов a, b, c, чей рост составляет h(a), h(b) и h(c) соответственно, причем выполнено h(a) > h(b). Очевидно, что каким бы ни был h(c), должно быть выполнено хотя бы одно из неравенств h(a) > h(c) или h(c) > h(b). Таким образом, видим, что для данного отношения R выполнено свойство отрицательной транзитив-

Теперь, вооружившись понятием бинарного отношения, мы можем перейти к обсуждению неоклассического подхода к моделированию предпочтений и выбора.

2.2.1 Задачи

/ 1. Предположим, условно, что существует всего два города, в каждом из которых продаются по три товара. Какова размерность пространства благ, исходя из определения блага по Дебре?

/ 2. Пусть X - множество всех ныне живущих людей на планете Земля. Проверьте выполнение следующих свойств:

полнота,

рефлексивность,

симметричность,

транзитивность,

отрицательная транзитивность

для следующих бинарных отношений, заданных на X:

(a) «является потомком»;

(b) «является внуком»;

(c) «является родителем такого же числа детей, что и»;

(d) «состоит в браке с» (допуская полигамию);

(e) «состоит в браке с» (предполагая моногамные отношения);

(f) «состоит в родстве с»;

(g) «хотя бы раз в жизни думал о».

/ 3. Пусть X - множество населенных пунктов на планете Земля. Какими свойствами обладают следующие отношения:

(a) «расположен восточнее» (в случае, если Земля круглая);

(b) «расположен восточнее» (в случае если, Земля плоская и стоит на черепахах);

(c) «имеет ту же численность, что и. . . »;

(d) «имеет то же число безработных, что и. . . »?

Бинарные отношения.

Пусть A и B – произвольные множества. Возьмем по одному элементу из каждого множества, a из A, b из B и запишем их так: (сначала элемент первого множества, затем элемент второго множества – т.е. нам важен порядок, в котором берутся элементы). Такой объект будем называть упорядоченной парой . Равными будем считать только те пары, у которых элементы с одинаковыми номерами равны. = , если a = c и b = d. Очевидно, что если a ≠ b, то .

Декартовым произведением произвольных множеств A и B (обозначается: AB) называется множество, состоящее из всех возможных упорядоченных пар, первый элемент которых принадлежит A, а второй принадлежит B. По определению: AB = { | aA и bB}. Очевидно, что если A≠B, то AB ≠ BA. Декартово произведение множества A само на себя n раз называется декартовой степенью A (обозначается: A n).

Пример 5. Пусть A = {x, y} и B = {1, 2, 3}.

AB = {, , , , , }.

BA = {<1, x>, <2, x>, <3, x>, <1, y>, <2, y>, <3, y>}.

AA = A 2 = {, , , }.

BB = B 2 = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <2, 3>, <3, 1>, <3, 2>, <3, 3>}.

Бинарным отношением на множестве M называется множество некоторых упорядоченных пар элементов множества M. Если r – бинарное отношение и пара принадлежит этому отношению, то пишут: r или x r y. Очевидно, r Í M 2 .

Пример 6. Множество {<1, 2>, <2, 2>, <3, 4>, <5, 2>, <2, 4>} является бинарным отношением на множестве {1, 2, 3, 4, 5}.

Пример 7. Отношение ³ на множестве целых чисел является бинарным отношением. Это бесконечное множество упорядоченных пар вида , где x ³ y, x и y – целые числа. Этому отношению принадлежат, например, пары <5, 3>, <2, 2>, <324, -23> и не принадлежат пары <5, 7>, <-3, 2>.

Пример 8. Отношение равенства на множестве A является бинарным отношением: I A = { | x Î A}. I A называется диагональю множества A.

Поскольку бинарные отношения являются множествами, то к ним применимы операции объединения, пересечения, дополнения и разности.

Областью определения бинарного отношения r называется множество D(r) = { x | существует такое y, что xry }. Областью значений бинарного отношения r называется множество R(r) = { y | существует такое x, что xry }.

Отношением, обратным к бинарному отношению r Í M 2 , называется бинарное отношение r -1 = { | Î r}. Очевидно, что D(r ‑1) = R(r), R(r ‑1) = D(r), r ‑ 1 Í M 2 .

Композицией бинарных отношений r 1 и r 2 , заданных на множестве M, называется бинарное отношение r 2 o r 1 = { | существует y такое, что Î r 1 и Í r 2 }. Очевидно, что r 2 o r 1 Í M 2 .

Пример 9. Пусть бинарное отношение r задано на множестве M = {a, b, c, d}, r = {, , , }. Тогда D(r) = {a, c}, R(r) = {b, c, d}, r ‑1 = {, , , }, r o r = {, , , }, r ‑1 o r = {, , , }, r o r ‑1 = {, , , , , , }.

Пусть r – бинарное отношение на множестве M. Отношение r называется рефлексивным , если x r x для любого x Î M. Отношение r называется симметричным , если вместе с каждой парой оно содержит и пару . Отношение r называется транзитивным , если из того, что x r y и y r z следует, что x r z. Отношение r называется антисимметричным , если оно не содержит одновременно пары и различных элементов x ¹ y множества M.

Укажем критерии выполнения этих свойств.

Бинарное отношение r на множестве M рефлексивно тогда и только тогда, когда I M Í r.

Бинарное отношение r симметрично тогда и только тогда, когда r = r ‑1 .

Бинарное отношение r на множестве M антисимметрично тогда и только тогда, когда r Ç r ‑1 = I M .

Бинарное отношение r транзитивно тогда и только тогда, когда r o r Í r.

Пример 10. Отношение из примера 6 является антисимметричным, но не является симметричным, рефлексивным и транзитивным. Отношение из примера 7 является рефлексивным, антисимметричным и транзитивным, но не является симметричным. Отношение I A обладает всеми четырьмя рассматриваемыми свойствами. Отношения r ‑1 o r и r o r ‑1 являются симметричными, транзитивными, но не являются антисимметричными и рефлексивными.

Отношением эквивалентности на множестве M называется транзитивное, симметричное и рефлексивное на М бинарное отношение.

Отношением частичного порядка на множестве М называется транзитивное, антисимметричное и рефлексивное на М бинарное отношение r.

Пример 11. Отношение из примера 7 является отношением частичного порядка. Отношение I A является отношением эквивалентности и частичного порядка. Отношение параллельности на множестве прямых является отношением эквивалентности.

Связанные определения

Свойства отношений

Бинарные отношения могут обладать различными свойствами, такими как

Виды отношений

  • Рефлексивное транзитивное отношение называется отношением квазипорядка.
  • Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности .
  • Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка .
  • Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка .
  • Полное антисимметричное (для любых x, y выполняется xRy или yRx) транзитивное отношение называется отношением линейного порядка.
  • Антирефлексивное асимметричное отношение называется отношением доминирования.

Виды двухместных отношений

  • Обратное отношение [уточнить ] (отношение, обратное к R) - это двухместное отношение, состоящее из пар элементов (у, х), полученных перестановкой пар элементов (х, у) данного отношения R. Обозначается: R −1 . Для данного отношения и обратного ему верно равенство: (R −1) −1 = R.
  • Взаимо-обратные отношения (взаимообратные отношения) - отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого - областью значений другого.
  • Рефлексивное отношение - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого х этого множества элемент х на­ходится в отношении R к самому себе, то есть для любого элемента х этого множества имеет место xRx. Примеры рефлексивных отношений: равенство , одновременность , сходство.
  • Антирефлексивное отношение (Иррефлексивное отношение, отметим, что также как антисимметричность не совпадает с несимметричностью иррефлексивность не совпадает с нерефлексивностью.) - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого элемента х этого множества неверно, что оно находится в отношении R к самому себе (неверно, что xRx), то есть возможен случай, что элемент множества не находится в отно­шении R к самому себе. Примеры нерефлексвных отношений: «заботиться о», «развлекать», «нервировать».
  • Транзитивное отношение - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz следует xRz (xRy&yRzxRz). Примеры транзитивных отношений: «больше», «меньше», «равно», «подобно», «выше», «севернее».
  • Нетранзитивное отношение [уточнить ] - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz не следует xRz ((xRy&yRzxRz)). Пример нетранзитивного отношения: «x отец y»
  • Симметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых элементов х и у этого множества из того, что х находится к у в отношении R (xRy), следует, что и у находится в том же отношении к х (уRx). Примером симметричных отношений могут быть равенство (=), отношение эквивалентности , подобия , одновременности, некоторые отношения родства (например, отношение братства).
  • Антисимметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy и xR −1 y следует х = у (то есть R и R −1 выполняются одновременно лишь для равных между собой членов).
  • Асимметричное отношение [уточнить ] - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy следует yRx. Пример: отношение «больше» (>) и «меньше» (<).
  • Отношение эквивалентности (отношение тождества [уточнить ] , отношение типа равенства) - двухместное отношение R между предметами х и у в предметной области D, удовлетворяющее следующим аксиомам (условиям): Таким образом, отношение типа равенства является одновременно рефлексивным, симметричным и транзитивным. Примеры: равенство, равномощность двух множеств, обмениваемость товаров на рынке, подобие , одновременность . Пример отношения, которое удовлетворяет аксиоме (3), но не удовлетворяет аксиомам (1) и (2): «больше».
  • Отношения порядка - отношения, обладающие только некоторыми из трёх свойств отношения эквивалентности. В частности, отношение рефлексивное и транзитивное, но несимметричное (например, «не больше») образует «нестрогий» порядок. Отношение транзитивное, но нерефлексивное и несимметричное (например, «меньше») - «строгий» порядок.
  • Функция - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что каждому значению x отно­шения xRy y . Пример: «y отец x ». Свойство функциональности отно­шения R записывается в виде аксиомы: (xRy и xRz )→(y z ). Поскольку каждому значению x в выражениях xRy и xRz соответствует одно и то же значение, то y и z совпадут, окажутся одними и теми же. Функциональное отношение однозначно, поскольку каждому значению x отношения xRy соответствует лишь одно-единственное значение y , но не наоборот.
  • Биекция (одно-однозначное отношение) - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что в нём каждому значению х соответствует единственное значение у , и каждому значению у соответствует единственное значение х . Одно-однозначное отношение является частным случаем однозначного отношения.
  • Связанное отношение - это двухместное отношение R , определённое на некотором множестве, отличающееся тем, что для любых двух различных элементов х и у из этого множества, одно из них находится в отношении R к другому (то есть выполнено одно из двух соотношений: xRy или yRx ). Пример: отношение «меньше» (<).

Операции над отношениями

Так как отношения, заданные на фиксированной паре множеств , , суть подмножества множества , то совокупность всех этих отношений образует булеву алгебру относительно операций объединения, пересечения и дополнения отношений. В частности, для произвольных ,

Часто вместо объединения, пересечения и дополнения отношений говорят об их дизъюнкции, конъюнкции и отрицании.

Например, , , то есть объединение отношения строгого порядка с отношением равенства совпадает с отношением нестрого порядка, а их пересечение пусто.

Кроме перечисленных важное значение имеют ещё операции обращения и умножения отношений, определяемые следующим образом.

Если , то обратным отношением называется отношение , определённое на паре , и состоящее из тех пар , для которых . Например, .

Пусть теперь , . Произведением отношений , называется отношение такое, что

Если , и , то произведение отношений не определено. Если же отношения рассматривать определённые на каком-то множестве , то такой ситуации не возникает.

Например, рассмотрим отношение строгого порядка определённого на множестве натуральных чисел. Несложно заметить, что

Бинарные отношения и называются перестановочными, если . Несложно заметить, что для любого бинарного отношения , определённого на , , где символом обозначено равенство, определённое на . Однако равенство не всегда справедливо.

Имеют место следующие тождества:

Отметим, что аналоги последних двух тождеств для не имеют места.

Некоторые свойства отношения можно определить, используя операции над отношениями:

См. также

Литература

  • А. И. Мальцев. Алгебраические системы. - М .: Наука, 1970.

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарное отношение" в других словарях:

    Бинарное отношение - . Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (< или >), отношение включения A Ì B.… … Экономико-математический словарь

    бинарное отношение - Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (), отношение включения A ? B. В широком смысле слова… … Справочник технического переводчика

    Двуместный предикат на заданном множестве. Под Б. о. иногда понимают подмножество множества упорядоченных пар (а, 6) элементов заданного множества А. Б. о. частный случай отношения. Пусть. Если, то говорят, что элемент находится в бинарном… … Математическая энциклопедия

    В логике то, что в отличие от свойства характеризует не отдельный предмет, а пару, тройку и т.д. предметов. Традиционная логика не рассматривала О.; в современной логике О. пропозициональная функция от двух или большего числа переменных. Бинарным … Философская энциклопедия

    отношение - ОТНОШЕНИЕ множество упорядоченных п ок индивидов (где п > 1), т.е. двоек, троек и т.д. Число п называется «местностью», или «арностью», О. и, соответственно, говорят о n местном (п арном) О. Так, например, двуместное О. называют… … Энциклопедия эпистемологии и философии науки

    В теории потребления это формальное описание способности потребителя сравнивать (упорядочивать по желательности) разные наборы товаров (потребительские наборы). Чтобы описать отношение предпочтения, не обязательно измерять желательность… … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Отношения обычно классифицируются по количеству связываемых объектов … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение в логике первого порядка двух и более аргументный предикат (многоместный предикат), двух и более предикатное свойство. Знак отношения: R.[уточнить] В терминах отношений… … Википедия

    У этого термина существуют и другие значения, см. Эквивалентность. Отношение эквивалентности () на множестве это бинарное отношение, для которого выполнены следующие условия: Рефлексивность: для любого в, Симметричность: если … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Бинарное отношение на мно … Википедия

электронная книга

Понятие отношения на множестве

Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями,

т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения X х X, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества X х X.

Вообще бинарные отношения на множестве X определяют следующим способом:

Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения X х X.

Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.

Условимся отношения обозначать буквами R, S, Т, Р и др.

Если R - отношения на множестве X, то, согласно определению, R X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.

Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или x R y. Последняя запись читается: «Элемент х находится в отношении R с элементом у».

Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.

Построим, например, граф отношений «меньше», заданного на множестве Х= (2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» - стрелкой (рис. 1).

На том же множестве X можно рассмотреть другое отношение - «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 2).

Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число х меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «х<у», «х у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или х – у = 3).

Для отношения R, заданного на множестве X, всегда можно задать отношение R -1 , ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше у», то обратным ему будет отношение «у больше х».

Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».

Свойства отношений

Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению ХхХ. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые. Рассмотрим на множестве отрезков, представленных на рис. 3, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 4) и будем их сравнивать.

Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно .

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х <=> xRx для любого х X

Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подобен самому себе).

Существуют отношения, которые свойством рефлексивности на обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 4) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или, просто симметричны.

Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на X <=> (xRy => yRx)

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к х. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от х к у, и стрелку, идущую от у к х, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:

Отношение параллельности на множестве прямых (если прямая х параллельна прямой у, то и прямая у параллельна прямой х);

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.

Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится .

антисимметрично на X <=> (xRy и х≠у => )

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может быть больше х);

Отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х).

Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 5. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 4). На нем можно заметить: если стрелки проведены от е к а и от а к с , то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с , то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзитивным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z.

Используя символы, это определение можно записать в таком виде:

R транзитивно на X <=> (xRy и yRz => xRz)

Граф транзитивного отношения с каждой парой стрелок, идущих от х к у и у к z , содержит стрелку, идущую от х к z . Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z , то отрезок х равен отрезку z . Это свойство отражено и на графе отношения равенства (рис. 4)

Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связанно на множестве X <=> (х≠у xRy или yRx)

Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х> у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа хну, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 4), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности-симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве

отрезков связанными не являются.

Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 6).

Решение. Отношение R- антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с , на графе есть стрелка, идущая от b к с .

Отношение R - связанно, так как любые две вершины соединены стрелкой.

Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число у не больше числа х в 2 раза.

Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число х больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3,5 и 8 и др.

Свойства отношений:


1) рефлексивность;


2)симметричность;


3)транзитивность.


4)связанность.


Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: х Rх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.


Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.


Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: ab, ba (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.


Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.


Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно х Rх: .


Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l », заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.


Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .


Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y , граф содержит стрелку, идущую от y к х (рис. 35).


Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.


Существуют отношения, которые не обладают свойством симметричности.


Действительно, если отрезок х длиннее отрезка у , то отрезок у не может быть длиннее отрезка х . Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.


Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.


Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у , то у не может быть больше х ), отношение «больше на» и др.


Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.


Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRz xRz.


Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z , содержит стрелку, идущую от х к z.


Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а= b, b=с)(а=с).


Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b , а отрезок b перпендикулярен отрезку с , то отрезки а и с не перпендикулярны!


Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.


Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это можно записать так: xy xRy или yRx.


Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y , либо y>x.


На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.


Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y , что ни число х не является делителем числа y , ни число y не является делителем числа х (числа 17 и 11 , 3 и 10 и т.д.).


Рассмотрим несколько примеров. На множестве Х={1, 2, 4, 8, 12} задано отношение «число х кратно числу y ». Построим граф данного отношения и сформулируем его свойства.


Про отношение равенства дробей говорят, оно является отношением эквивалентности.


Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.


Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).


В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.


Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества - классы эквивалентности.


Так, мы установили, что отношению равенства на множестве
Х ={ ;; ; ; ; } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.


Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?


Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {; ; }, неразличимы с точки зрения отношения равенства, и дробь может быть заменена другой, например . И эта замена не изменит результата вычислений.


Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.


В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.


Другим важным видом отношений являются отношения порядка. Рассмотрим задачу.На множестве Х ={3, 4, 5, 6, 7, 8, 9, 10 } задано отношение «иметь один и тот же остаток при делении на 3 ». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9 ). Во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10 ). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8 ). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х . Следовательно, отношение «иметь один и тот же остаток при делении на 3 », заданное на множестве Х , является отношением эквивалентности.


Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».


Отношение R на множестве Х называется отношением строгого порядка , если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х< y ».


Если же отношение обладает свойствами рефлексивности, антисимметричности и транзитивности, то такое оно будет являться отношением нестрогого порядка . Например, отношение «х y ».


Примерами отношения порядка могут служить: отношение «меньше» на множестве натуральных чисел, отношение «короче» на множестве отрезков. Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка . Например, отношение «меньше» на множестве натуральных чисел.


Множество Х называется упорядоченным, если на нем задано отношение порядка.


Например, множество Х= {2, 8, 12, 32 } можно упорядочить при помощи отношения «меньше» (рис. 41), а можно это сделать при помощи отношения «кратно» (рис. 42). Но, являясь отношением порядка, отношения «меньше» и «кратно» упорядочивают множество натуральных чисел по-разному. Отношение «меньше» позволяет сравнивать два любых числа из множества Х , а отношение «кратно» таким свойством не обладает. Так, пара чисел 8 и 12 отношением «кратно» не связана: нельзя сказать, что 8 кратно 12 либо 12 кратно 8.


Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.









2024 © rukaraoke.ru.